Refinar búsqueda
Resultados 1251-1260 de 5,098
Interactive effects of increased temperature, pCO2 and the synthetic progestin levonorgestrel on the fitness and breeding of the amphipod Gammarus locusta
2018
Cardoso, P.G. | Loganimoce, E.M. | Neuparth, T. | Rocha, M.J. | Rocha, E. | Arenas, F.
Given the lack of knowledge regarding climate change-chemical exposure interactions, it is vital to evaluate how these two drivers jointly impact aquatic species. Thus, for the first time, we aimed at investigating the combined effects of increased temperature, pCO2 and the synthetic progestin levonorgestrel on survival, growth, consumption rate and reproduction of the amphipod Gammarus locusta. For that, a full factorial design manipulating temperature [ambient temperature and warming (+4 °C)], pCO2 [normocapnia and hypercapnia (Δ pH 0.5 units)] and the progestin levonorgestrel (LNG: L1 – 10 ngLL−1 and L2 – 1000 ngLL−1, control – no progestin and solvent control – vehicle ethanol (0.01%)) was implemented for 21 days. G. locusta was strongly negatively affected by warming, experiencing higher mortality rates (50–80%) than in any other treatments. Instead, growth rates were significantly affected by interactions of LNG with temperature and pCO2. It was observed, in the short-term (7d) that under ambient temperature (18 °C) and hypercapnic conditions (pH 7.6), the LNG presence promoted the amphipod's growth, while in the medium-term (21d) this response was not observed. Relative consumption rates (RCRs), during the first week were higher than in the third week. Furthermore, in the first week, RCRs were negatively affected by higher temperature while in the third week, RCRs were negatively affected by acidification. Furthermore, it was observed a negative effect of higher temperature and acidification on G. locusta fecundity, contrarily to LNG. Concluding, the impact of increased temperature and pCO2 was clearly more adverse for the species than exposure to the synthetic progestin, however, some interactions between the progestin and the climate factors were observed. Thus, in a future scenario of global change, the presence of LNG (and other progestins alike) may modulate to a certain level the effects of climate drivers (and vice-versa) on the gammarids fitness and reproduction.
Mostrar más [+] Menos [-]Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response
2018
Zhang, Zhenyan | Ke, Mingjing | Qu, Qian | Peijnenburg, W.J.G.M. | Lu, Tao | Zhang, Qi | Ye, Yizhi | Xu, Pengfei | Du, Benben | Sun, Liwei | Qian, Haifeng
Copper nanoparticles (nCu) are widely used in industry and in daily life, due to their unique physical, chemical, and biological properties. Few studies have focused on nCu phytotoxicity, especially with regard to toxicity mechanisms in crop plants. The present study examined the effect of 15.6 μM nCu exposure on the root morphology, physiology, and gene transcription levels of wheat (Triticum aestivum L.), a major crop cultivated worldwide. The results obtained were compared with the effects of exposing wheat to an equivalent molar concentration of ionic Cu (Cu²⁺ released from CuSO₄) and to control plants. The relative growth rate of roots decreased to approximately 60% and the formation of lateral roots was stimulated under nCu exposure, possibly due to the enhancement of nitrogen uptake and accumulation of auxin in lateral roots. The expression of four of the genes involved in the positive regulation of cell proliferation and negative regulation of programmed cell death decreased to 50% in the Cu²⁺ treatment compared to that of the control, while only one gene was down-regulated to about half of the control in nCu treatment. This explained the decreased root cell proliferation and higher extent of induced cell death in Cu²⁺- than in nCu-exposed plants. The increased methane dicarboxylic aldehyde accumulation (2.17-fold increase compared with the control) and decreased antioxidant enzyme activities (more than 50% decrease compared with the control) observed in the Cu²⁺ treatment in relation to the nCu treatment indicated higher oxidative stress in Cu²⁺- than in nCu-exposed plants. Antioxidant (e.g., proline) synthesis was pronouncedly induced by nCu to scavenge excess reactive oxygen species, alleviating phytotoxicity to wheat exposed to this form of Cu. Overall, oxidative stress and root growth inhibition were the main causes of nCu toxicity.
Mostrar más [+] Menos [-]Methodological factors influencing inhalation bioaccessibility of metal(loid)s in PM2.5 using simulated lung fluid
2018
Kastury, Farzana | Smith, E. | Karna, Ranju R. | Scheckel, Kirk G. | Juhasz, A.L.
In this study, methodological factors influencing the dissolution of metal(loid)s in simulated lung fluid (SLF) was assessed in order to develop a standardised method for the assessment of inhalation bioaccessibility in PM2.5. To achieve this aim, the effects of solid to liquid (S/L) ratio (1:100 to 1:5000), agitation (magnetic agitation, occasional shaking, orbital and end-over-end rotation), composition of SLF (artificial lysosomal fluid: ALF; phagolysosomal simulant fluid: PSF) and extraction time (1–120 h) on metal(loid) bioaccessibility were investigated using PM2.5 from three Australian mining/smelting impacted soils and a certified reference material. The results highlighted that SLF composition significantly (p < 0.001) influenced metal(loid) bioaccessibility and that when a S/L ratio of 1:5000 and end-over-end rotation was used, metal(loid) solubility plateaued after approximately 24 h. Additionally, in order to assess the exposure of metal(loid)s via incidental ingestion of surface dust, PM2.5 was subjected to simulated gastro-intestinal tract (GIT) solutions and the results were compared to extraction using SLF. Although As bioaccessibility in SLF (24 h) was significantly lower than in simulated GIT solutions (p < 0.05), Pb bioaccessibility was equal to or significantly higher than that extracted using simulated GIT solutions (p < 0.05).
Mostrar más [+] Menos [-]Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods
2018
Wallace, Joshua S. | Garner, Emily | Pruden, Amy | Aga, Diana S.
Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking. This study examines the occurrence and transformation of sulfonamides, tetracyclines, tetracycline degradation products, and related ARGs throughout a full-scale advanced anaerobic digester (AAD) receiving continuous manure and antibiotic input. Manure samples were collected throughout the AAD system to evaluate baseline antibiotic and ARG input (raw manure), the effect of hygenization (post-pasteurized manure) and anaerobic digestion (post-digestion manure) on antibiotic and ARG levels. Antibiotics were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the ARGs tet(O), tet(W), sul1 and sul2 were analyzed by quantitative polymerase chain reaction (Q-PCR). Significant reductions in the concentrations of chlortetracycline, oxytetracycline, tetracycline and their degradation products were observed in manure liquids following treatment (p < 0.001), concomitant to significant increases in manure solids (p < 0.001). These results suggest sorption is the major removal route for tetracyclines during AAD. Significant decreases in the epimer-to-total residue ratios for chlortetracycline and tetracycline in manure solids further indicate degradation is desorption-limited. Moreover, sul1 and sul2 copies decreased significantly (p < 0.001) following AAD in the absence of sulfonamide antibiotics, while tetracyclines-resistant genes remained unchanged. A cross-sectional study of dairy farms utilizing natural aeration and liquid-solid separation treatments was additionally performed to compare levels of antibiotics and ARGs found in AAD with the levels in common manure management systems. The concentration of antibiotics in raw manure varied greatly between farms while minimal differences in ARGs were observed. However, significant (p < 0.01) differences in the levels of antibiotics and ARGs (except tet(W)) were observed in the effluents from the three different manure management systems.
Mostrar más [+] Menos [-]Human health risk assessment for nanoparticle-contaminated aquifer systems
2018
Tosco, Tiziana | Sethi, Rajandrea
Nanosized particles (NPs), such as TiO₂, Silver, graphene NPs, nanoscale zero-valent iron, carbon nanotubes, etc., are increasingly used in industrial processes, and releases at production plants and from landfills are likely scenarios for the next years. As a consequence, appropriate procedures and tools to quantify the risks for human health associated to these releases are needed.The tiered approach of the standard ASTM procedure (ASTM-E2081-00) is today the most applied for human health risk assessment at sites contaminated by chemical substances, but it cannot be directly applied to nanoparticles: NP transport along migration pathways follows mechanisms significantly different from those of chemicals; moreover, also toxicity indicators (namely, reference dose and slope factor) are NP-specific. In this work a risk assessment approach modified for NPs is proposed, with a specific application at Tier 2 to migration in groundwater. The standard ASTM equations are modified to include NP-specific transport mechanisms. NPs in natural environments are typically characterized by a heterogeneous set of NPs having different size, shape, coating, etc. (all properties having a significant impact on both mobility and toxicity). To take into account this heterogeneity, the proposed approach divides the NP population into classes, each having specific transport and toxicity properties, and simulates them as independent species. The approach is finally applied to a test case simulating the release of heterogeneous Silver NPs from a landfill. The results show that taking into account the size-dependent mobility of the particles provides a more accurate result compared to the direct application of the standard ASTM procedure. In particular, the latter tends to underestimate the overall toxic risk associated to the nP release.
Mostrar más [+] Menos [-]Characterization of volatile organic compounds and the impacts on the regional ozone at an international airport
2018
Yang, Xiaowen | Cheng, Shuiyuan | Wang, Gang | Xu, Ran | Wang, Xiaoqi | Zhang, Hanyu | Chen, Guolei
In this study, the measurement of volatile organic compounds (VOCs) was conducted at Beijing Capital International Airport (ZBAA) and a background reference site in four seasons of 2015. Total concentrations of VOCs were 72.6 ± 9.7, 65.5 ± 8.7, 95.8 ± 11.0, and 79.2 ± 10.8 μg/m3 in winter, spring, summer, and autumn, respectively. The most abundant specie was toluene (10.1%–17.4%), followed by benzene, ethane, isopentane, ethane, acetylene, and n-butane. Seasonal variations of VOCs were analyzed, and it was found that the highest concentration occurring in summer, while the lowest in spring. For the diurnal variation, the concentration of VOCs in the daytime (9:00–15:00) was less than that at night (15:00–21:00) obviously. Ozone Formation Potential (OFP) was calculated by using Maximum Incremental Reactivity (MIR) method. The greatest contribution to OFP from alkenes and aromatics, which accounted for 27.3%–51.2% and 36.6%–58.6% of the total OFP. The WRF-CMAQ model was used to simulate the impact of airport emissions on the surrounding area. The results indicated that the maximum impact of VOCs emissions and all sources emissions at the airport on O3 was 0.035 and −23.8 μg/m3, respectively. Meanwhile, within 1 km from the airport, the concentration of O3 around the airport was greatly affected by airport emitted.
Mostrar más [+] Menos [-]Health risk assessment of haloacetonitriles in drinking water based on internal dose
2018
Zhang, Ying | Han, Xuemei | Niu, Zhiguang
To estimate the health risk of haloacetonitriles in different kinds of drinking water, the concentrations of haloacetonitriles in tap water, boiled water and direct drinking water were detected. The physiologically based pharmacokinetic (PBPK) model was used to calculate internal dose in the human body for haloacetonitriles through ingestion, and the probability distributions of the non-carcinogenic risk of haloacetonitriles for human via drinking water were assessed. This study found that the mean concentrations of dichloroacetonitrile (DCAN) in tap water, boiled water and direct drinking water were 0.955 μg/L, 0.207 μg/L and 0.127 μg/L, and those of dibromoacetonitrile (DBAN) were 0.221 μg/L, 0.104 μg/L, 0.089 μg/L, respectively. In China, direct drinking water is used most frequently, so the concentrations of haloacetonitriles in direct drinking water were used to obtain data on the internal dose of haloacetonitriles. In addition, the simulation results for the PBPK model showed that the highest and lowest concentrations of DCAN occurred in the liver and venous blood, respectively. The peak concentrations of DBAN in each tissue were in the decreasing order liver > rapidly perfused tissue > kidney > slowly perfused tissues > fat > arterial blood (venous blood). In addition, the highest 95th percentile hazard quotients (HQ) value of haloacetonitriles via drinking water for humans was 8.89 × 10−3, much lower than 1. The 95th percentile hazard index (HI) was 0.046, which was also lower than 1, suggesting that there was no obvious non-carcinogenic risk.
Mostrar más [+] Menos [-]Realtime chemical characterization of post monsoon organic aerosols in a polluted urban city: Sources, composition, and comparison with other seasons
2018
Chakraborty, Abhishek | Mandariya, Anil Kumar | Chakraborti, Ruparati | Gupta, Tarun | Tripathi, S.N.
Real time chemical characterization of non-refractory submicron aerosols (NR-PM1) was carried out during post monsoon (September–October) via Aerosol Mass Spectrometer (AMS) at a polluted urban location of Kanpur, India. Organic aerosol (OA) was found to be the dominant species with 58% contribution to total NR-PM1 mass, followed by sulfate (16%). Overall, OA was highly oxidized (average O/C = 0.66) with the dominance of oxidized OAs (60% of total OA) as revealed by source apportionment. Oxidized nature of OA was also supported by very high OC/EC ratios (average = 8.2) obtained from simultaneous offline filter sampling. High and low OA loading periods have very dramatic effects on OA composition and oxidation. OA O/C ratios during lower OA loading periods were on average 30% higher than the same from high loading periods with significant changes in types and relative contribution from oxidized OAs (OOA). Comparison of OA sources and chemistry among post monsoon and other seasons revealed significant differences. Characteristics of primary OAs remain very similar, but features of OOAs showed substantial changes from one season to another. Winter had lowest OOA contribution to total OA but similar overall O/C ratios as other seasons. This reveals that processing of primary OAs, local atmospheric chemistry, and regional contributions can significantly alter OA characteristics from one season to another. This study provides interesting insights into the seasonal variations of OA sources and evolution in a very polluted and complex environment.
Mostrar más [+] Menos [-]Effects of dietary 2,2′, 4,4′-tetrabromodiphenyl ether (BDE-47) exposure on medaka (Oryzias latipes) swimming behavior
2018
Sastre, Salvador | Fernández Torija, Carlos | Carbonell, Gregoria | Rodríguez Martín, José Antonio | Beltrán, Eulalia María | González-Doncel, Miguel
A diet fortified with 2,2′, 4,4′-tetrabromodiphenyl ether (BDE-47: 0, 10, 100, and 1000 ng/g) was dosed to 4–7-day-old post-hatch medaka fish for 40 days to evaluate the effects on the swimming activity of fish using a miniaturized swimming flume. Chlorpyrifos (CF)-exposed fish were selected as the positive control to assess the validity and sensitivity of the behavioral findings. After 20 and 40 days of exposure, the locomotor activity was analyzed for 6 min in a flume section (arena). The CF positive control for each time point were fish exposed to 50 ng CF/ml for 48 h. Swimming patterns, presented as two-dimensional heat maps of fish movement and positioning, were obtained by geostatistical analyses. The heat maps of the control groups at time point 20 revealed visually comparable swimming patterns to those of the BDE-47-treated groups. For the comparative fish positioning analysis, both the arenas were divided into 15 proportional areas. No statistical differences were found between residence times in the areas from the control groups and those from the BDE-47-treated groups. At time point 40, the heat map overall patterns of the control groups differed visually from that of the 100-ng BDE-47/g-treated group, but a comparative analysis of the residence times in the corresponding 15 areas did not reveal consistent differences. The relative distances traveled by the control and treated groups at time points 20 and 40 were also comparable. The heat maps of CF-treated fish at both time points showed contrasting swim patterns with respect to those of the controls. These differential patterns were statistically supported with differences in the residence times for different areas. The relative distances traveled by the CF-treated fish were also significantly shorter. These results confirm the validity of the experimental design and indicate that a dietary BDE-47 exposure does not affect forced swimming in medaka at growing stages.
Mostrar más [+] Menos [-]Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids
2018
Wang, Ying | Wu, Fengchang | Liu, Yuedan | Mu, Yunsong | Giesy, John P. | Meng, Wei | Hu, Qing | Liu, Jing | Dang, Zhi
Effect doses (EDs) of metals/metalloids, usually obtained from toxicological experiments are required for developing environmental quality criteria/standards for use in assessment of hazard or risks. However, because in vivo tests are time-consuming, costly and sometimes impossible to conduct, among more than 60 metals/metalloids, there are sufficient data for development of EDs for only approximately 25 metals/metalloids. Hence, it was deemed a challenge to derive EDs for additional metals by use of alternative methods. This study found significant relationships between EDs and physicochemical parameters for twenty-five metals/metalloids. Elements were divided into three classes and then three individual empirical models were developed based on the most relevant parameters for each class. These parameters included log-βn, ΔE0 and Xm²r, respectively (R² = 0.988, 0.839, 0.871, P < 0.01). Those models can satisfactorily predict EDs for another 25 metals/metalloids. Here, these alternative models for deriving thresholds of toxicity that could be used to perform preliminarily, screen-level health assessments for metals are presented.
Mostrar más [+] Menos [-]