Refinar búsqueda
Resultados 1271-1280 de 6,532
Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant transformation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways in colonic mucosal cells
2020
Meng, Jian | Zhou, Xiaoling | Yang, Juan | Qu, Xianjun | Cui, Shuxiang
As ZnO nanoparticles have been applied in many fields, their biological risks on human health, of course, are worthy of our attention. Whether ZnO NPs have the risk and how colonic cells respond to the invaded ZnO NPs are still unknown. Herein, we evaluated the biological effects of ZnO NPs on colonic mucosal cells by in vitro and in vivo methods. IMCE cells, with APC mutation but phenotypically normal, demonstrated hyperproliferation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways when exposed to ZnO NPs for 24 h. Long-term exposure of ZnO NPs resulted in the malignant transformation of IMCE cells, showing the morphological changes, anchorage-independent cell growth ability. Importantly, IMCE cells exposed to ZnO NPs subcutaneously grew and induced tumorigenesis in nude mice. In conclusion, exposure of ZnO NPs could induce malignant transformation of colonic mucosal cells through the CXCR2/NF-κB/STAT3/ERK and AKT pathways. We suggest that it was necessary to consider using the precautionary principle for gastrointestinal contact nanomaterials.
Mostrar más [+] Menos [-]Biological responses of shoal flounder (Syacium gunteri) to toxic environmental pollutants from the southern Gulf of Mexico
2020
Quintanilla-Mena, Mercedes | Gold-Bouchot, Gerardo | Zapata-Pérez, Omar | Rubio-Piña, Jorge | Quiroz-Moreno, Adriana | Vidal-Martínez, Víctor Manuel | Aguirre-Macedo, Ma Leopoldina | Puch-Hau, Carlos
The Gulf of Mexico (GoM) is exposed to a diversity of contaminants, such as hydrocarbons and heavy metal(oid)s, either from natural sources or as a result of uncontrolled coastal urbanisation and industrialisation. To determine the effect of these contaminants on the marine biota along the Mexican GoM, the biological responses of the shoal flounder Syacium gunteri, naturally exposed, were studied. The study area included all the Mexican GoM, which was divided into three areas: West-southwest (WSW), South-southwest (SSW) and South-southeast (SSE). The biological responses included the global DNA methylation levels, the expression of biomarker genes related to contaminants (cytochrome P450 1A, glutathione S-transferase, glutathione reductase, glutathione peroxidase, catalase, and vitellogenin), histopathological lesions and PAH metabolites in bile (hydroxynaphthalene, hydroxyphenanthrene, hydroxypyrene and Benzo[a]pyrene). The correlation between the biological responses and the concentration of contaminants (hydrocarbons and metal(oid)s), present in both sediments and organisms, were studied. The shoal flounders in WSW and SSW areas presented higher DNA hypomethylation, less antioxidative response and biotransformation gene expression and a higher concentration of PAH metabolites in bile than SSE area; those responses were associated with total hydrocarbons and metals such as chromium (Cr). SSE biological responses were mainly associated with the presence of metals, such as cadmium (Cd) and copper (Cu), in the tissue of shoal flounders. The results obtained on the physiological response of the shoal flounder can be used as part of a permanent active environmental surveillance program to watch the ecosystem health of the Mexican GoM.
Mostrar más [+] Menos [-]Who’s better at spotting? A comparison between aerial photography and observer-based methods to monitor floating marine litter and marine mega-fauna
2020
Garcia-Garin, Odei | Aguilar, Alex | Borrell, Asunción | Gozalbes, Patricia | Lobo, Agustín | Penadés-Suay, Jaime | Raga, Juan A. | Revuelta, Ohiana | Serrano, María | Vighi, Morgana
Pollution by marine litter is raising major concerns due to its potential impact on marine biodiversity and, above all, on endangered mega-fauna species, such as cetaceans and sea turtles. The density and distribution of marine litter and mega-fauna have been traditionally monitored through observer-based methods, yet the advent of new technologies has introduced aerial photography as an alternative monitoring method. However, to integrate results produced by different monitoring techniques and consider the photographic method a viable alternative, this ‘new’ methodology must be validated. This study aims to compare observations obtained from the concurrent application of observer-based and photographic methods during aerial surveys. To do so, a Partenavia P-68 aircraft equipped with an RGB sensor was used to monitor the waters off the Spanish Mediterranean coast along 12 transects (941 km). Over 10000 images were collected and checked manually by a photo-interpreter to detect potential targets, which were classified as floating marine macro-litter, mega-fauna and seabirds. The two methods allowed the detection of items from the three categories and proved equally effective for the detection of cetaceans, sea turtles and large fish on the sea surface. However, the photographic method was more effective for floating litter detection and the observer-based method was more effective for seabird detection. These results provide the first validation of the use of aerial photography to monitor floating litter and mega-fauna over the marine surface.
Mostrar más [+] Menos [-]Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils
2020
Khadhar, Samia | Sdiri, Ali | Chekirben, Anis | Azouzi, Rim | Charef, Abdelkarim
This work has been conducted as an integrated approach to study the behavior of soils to the metals from sludge amendment. Bureau Commun Reference (BCR) methodology was used as an appropriate tool to harvest precious information about heavy metals evolution versus depth before and after sludge treatments. This three-step extraction procedure (i.e., BCR) may clarify the leaching or retention of heavy metals from the amended soils, as well as their risk level. Our results indicated that sludge applications has shown an increasing flux of heavy metals towards amended soils, of which Pb was the most abundant. Heavy metals mobility in control and amended soils showed that main influencing factors are pH and total organic carbon, especially for copper mobility. Almost all of the metals decreased with soil depth, except for Ni. Speciation of heavy metals in sludges showed that about 45% of Pb, Cu and Ni were associated with residual fraction; Cd was mainly bound to reducible fraction. Speciation forms in the control soil indicated that short term application of sludge has remobilized a fraction of heavy metals into their most labile forms (i.e., exchangeable and reducible fraction). Multivariate statistical analysis suggested that Cd, Zn, Pb and Cu preferentially accumulated in organic-rich surface horizons and clay layers where adsorption played an important role as a determining mechanism. Nevertheless, adsorption did not appear to be directly controlled by high pH values (pH > 7). From Cluster Analysis (CA), one can easily recognize that Pb, Zn and Cu movement in soil profiles were significantly affected by pH, especially residual fraction, labile fraction and reducible fraction.
Mostrar más [+] Menos [-]Forest mosses sensitively indicate nitrogen deposition in boreal background areas
2020
Salemaa, Maija | Kieloaho, Antti-Jussi | Lindroos, Antti-Jussi | Merilä, Päivi | Poikolainen, Jarmo | Manninen, Sirkku
Mosses take up nitrogen (N) mainly from precipitation through their surfaces, which makes them competent bioindicators of N deposition. We found positive relationships between the total N concentration (mossN%) of common terrestrial moss species (feather mosses Pleurozium schreberi and Hylocomium splendens, and a group of Dicranum species) and different forms of N deposition in 11–16 coniferous forests with low N deposition load in Finland. The mosses were collected either inside (Dicranum group) or both inside and outside (feather mosses) the forests. Deposition was monitored in situ as bulk deposition (BD) and stand throughfall (TF) and detected for ammonium (NH₄⁺-N), nitrate (NO₃⁻-N), dissolved organic N (DON), and total N (Nₜₒₜ, kg ha⁻¹yr⁻¹). Nₜₒₜ deposition was lower in TF than BD indicating that tree canopies absorbed N from deposition in N limited boreal stands. However, mossN% was higher inside than outside the forests. In regression equations, inorganic N in BD predicted best the mossN% in openings, while DON in TF explained most variation of mossN% in forests. An asymptotic form of mossN% vs. TF Nₜₒₜ curves in forests and free NH₄⁺-N accumulation in tissues in the southern plots suggested mosses were near the N saturation state already at the Nₜₒₜ deposition level of 3–5 kg ha⁻¹yr⁻¹. N leachate from ground litterfall apparently also contributed the N supply of mosses. Our study yielded new information on the sensitivity of boreal mosses to low N deposition and their response to different N forms in canopy TF entering moss layer. The equations predicting the Nₜₒₜ deposition with mossN% showed a good fit both in forest sites and openings, especially in case of P. schreberi. However, the open site mossN% is a preferable predictor of N deposition in monitoring studies to minimize the effect of tree canopies and N leachate from litterfall on the estimates.
Mostrar más [+] Menos [-]Insights into the removal efficiencies of aged polycyclic aromatic hydrocarbons in humic acids of different soil aggregate fractions by various oxidants
2020
Tan, Wenbing | Liu, Niankai | Dang, Qiuling | Cui, Dongyu | Xi, Beidou | Yu, Hong
Chemically oxidative removal of polycyclic aromatic hydrocarbons (PAHs) in soil is related to their occurrence state. Whether the heterogeneity of natural organic matter has an effect on the occurrence of PAHs in soil and, if there is an effect, on the oxidative removal efficiency of PAHs remains unknown. In this study, the removal efficiencies of 16 priority PAHs aged in humic acids (HAs) of different soil aggregate fractions by various oxidants were investigated by combining soil fractionation and microreaction experiments. Results showed that the accumulations of PAHs in particulate HA (P-HA) and microaggregate occluded HA (MO-HA) mainly occurred in the early period of the aging time frame. In contrast, PAH accumulation in non-aggregated silt and clay associated HA (NASCA-HA) was relatively slow and tended to saturate in the late period of the aging time frame. The cumulative contents of PAHs throughout the entire aging period in MO-HA and NASCA-HA were significantly greater than that in P-HA. The aged PAHs in P-HA and NASCA-HA exhibited the highest and lowest removal efficiencies, respectively. This ranking was mainly governed by the molecular size and polarity of HAs. Sodium persulfate and potassium permanganate had the highest removal efficiencies in total PAHs in HAs, with average efficiencies of 85.8% and 79.1%, respectively, in P-HA. Hydrogen peroxide had the lowest degradation efficiency in PAHs. In particular, the degradation efficiency of total PAHs in NASCA-HA was lowered to 31.0%. PAH congeners in HAs showed a large difference in oxidative removal efficiency. Low-ring PAH was more easily degraded than medium- and high-ring PAHs, and in most treatments, fluoranthene and pyrene in the medium ring and benzo[a]pyrene in the high ring demonstrated higher efficiencies than other PAHs with the same number of rings. Our findings are useful in promoting the accurate and green remediation of PAH-contaminated soils.
Mostrar más [+] Menos [-]Fine sediment particle microscopic characteristics, bioavailable phosphorus and environmental effects in the world largest reservoir
2020
Wang, Xiaoxiao | Zhou, Jun | Wu, Yanhong | Bol, Roland | Wu, Yong | Sun, Hongyang | Bing, Haijian
The transport and retention of sediments in fine grain sizes plays an important role in the cycles of phosphorus (P), and is closely related to the extent and potential for eutrophication in water reservoirs. In order to highlight the environmental indications for the transport of fine sediment particles and the associated bioavailable phosphorus (Bio-P) in the world largest reservoir, the Three Gorges Reservoir (TGR), the suspended and bed sediments were collected at 13 sections in 2016. The sediment physicochemical properties, micromorphology of sediment particles, distribution of elements on particle surface, P adsorption parameters, and P fractions in different grain sized sediments were analyzed. The results showed that the fine sediment particles had a strong P adsorption ability due to their micromorphology, mineral compositions, and the high contents of Fe/Al/Mn (hydr)oxides, which contributed a higher concentration of Bio-P in <16 μm sediment particles. The adsorption of P on the sediment particles occurred longitudinally along the TGR, and the fine sediment particles (<16 μm) dominated the transport and distribution of Bio-P in the TGR sediments. The reduced inflow and retention of fine sediment particles, caused by the construction of cascade reservoirs along the Jinsha River (upper reach of the Yangtze River), has resulted in the decrease in the retention of Bio-P in the TGR. Therefore, we conclude that the continuously decrease of inflow and retention of the fine sediment particles in the TGR, and with it a reduced sediment P buffer capacity, may enhance algal blooms occurrence also in view of the increased P discharge from the overall TGR catchment. The study results can contribute to improved management guidance on fine sediment particles and associated phosphorus for the operation and environmental protection of other large reservoirs in the world.
Mostrar más [+] Menos [-]Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient
2020
Wang, Zhenhua | Wang, Chengzhang | Wang, Bin | Wang, Xin | Li, Jing | Wu, Jin | Liu, Lingli
Atmospheric pollution could significantly alter tree growth independently and synergistically with meteorological conditions. North China offers a natural experiment for studying how plant growth responds to air pollution under different meteorological conditions, where rapid economic growth has led to severe air pollution and climate changes increase drought stress. Using a single aspen clone (Populus euramericana Neva.) as a ‘phytometer’, we conducted three experiments to monitor aspen leaf photosynthesis and stem growth during in situ exposure to atmospheric pollutants along the urban-rural gradient around Beijing. We used stepwise model selection to select the best multiple linear model, and we used binned regression to estimate the effects of air pollutants, atmospheric moisture stress and their interactions on aspen leaf photosynthesis and growth. Our results indicated that ozone (O₃) and vapor pressure deficit (VPD) inhibited leaf photosynthesis and stem growth. The interactive effect of O₃ and VPD resulted in a synergistic response: as the concentration of O₃ increased, the negative impact of VPD on leaf photosynthesis and stem growth became more severe. We also found that nitrogen (N) deposition had a positive effect on stem growth, which may have been caused by an increase in canopy N uptake, although this hypothesis needs to be confirmed by further studies. The positive impact of aerosol loading may be due to diffuse radiation fertilization effects. Given the decline in aerosols and N deposition amidst increases in O₃ concentration and drought risk, the negative effects of atmospheric pollution on tree growth may be aggravated in North China. In addition, the interaction between O₃ and VPD may lead to a further reduction in ecosystem productivity.
Mostrar más [+] Menos [-]Mapping polychlorinated dibenzo-p-dioxins/dibenzofurans in soils around Pugu municipal dump site in Dar es Salaam, Tanzania: Implications on dermal and soil ingestion exposure for people in the peripheral
2020
Pius, Christina | Koosaletse-Mswela, Pulane | Sichilongo, Kwenga | Dikinya, Oagile
Experimental data on the contribution of a dump site in Tanzania as a point source of the 17 possible congeners of PCDD/Fs to the environment is presented. Dry and wet season samples were collected around Pugu municipal dump site followed by GCxGC-TOFMS analysis. The dominant congeners were OctaCDD, 1,2,3,4,6,7,8-HepCDF; 1,2,3,4,6,7,8-HeptaCDD and 1,2,4,7-PeCDD. The concentrations of the congeners expressed as TEQ WHO₂₀₀₅ ranged from 11.69 to 48.97 pg/g with a mean of 29.44 pg/g for the dry season and TEQ WHO₂₀₀₅ 4.13–85.82 pg/g with a mean of 41.51 pg/g for the wet season. These levels were speculated high enough to accumulate in free-range chickens and cause harmful effects to humans that consumed them especially residents around Pugu dump site. Exposure of people to PCDD/Fs through dermal absorption and soil ingestion were estimated using the VLIER-HUMAAN Mathematical model. Exposure through dermal absorption was estimated to be 1.2 × 10⁻⁴ and 9.8 × 10⁻⁶ ng TEQ/kg day for children and adults respectively while through soil ingestion via consumption of contaminated foods and other sources was 0.0045 and 0.27 ng TEQ/kg day for children and adults respectively. These values however were well below the WHO tolerable daily intake. Generally, there was no significant variation for total PCDD/Fs in the dry and wet season (α = 0.08). Strong positive correlation (r = 0.94) between total PCDD/Fs and organic matter content was observed during the wet season.
Mostrar más [+] Menos [-]Synthesis of nano-magnetic MnFe2O4 to remove Cr(III) and Cr(VI) from aqueous solution: A comprehensive study
2020
Eyvazi, Behzad | Jamshidi-Zanjani, Ahmad | Darban, Ahmad Khodadadi
The co-precipitation method was used to synthesize nano-magnetic adsorbent MnFe₂O₄ (nMFO), characterized through XRD, SEM, EDS, and BET techniques. The synthesized nMFO was used for hexavalent and trivalent chromium ions elimination from the aqueous phase. The optimum pH for the adsorption of Cr (VI) and Cr (III) was determined as 2 and 5, respectively. The chromium ions adsorption behavior was well interpreted through the pseudo-second order kinetics model. Furthermore, isotherm studies were conducted, and the obtained results indicated that Langmuir isotherm model could well justify the chromium ions adsorption process. Quick removal (less than 10 min) of both chromium ions and high removal efficiency were occurred using nMFO. The utmost adsorption capacity of trivalent and hexavalent chromium ions were determined as 39.6 and 34.84 mg g⁻¹, respectively. Thermodynamic studies on chromium adsorption revealed positive value for ΔH and negative value for ΔG, representing that chromium ions adsorption was an endothermic and spontaneous process. The multilinearity in the graphs of chromium ions adsorption was observed using intra-particle diffusion model. In this regard, the external mass transfer of chromium ions on synthesized nanoparticles was the important and controlling step in the adsorption process.
Mostrar más [+] Menos [-]