Refinar búsqueda
Resultados 1301-1310 de 7,214
Microplastics-perturbed gut microbiota triggered the testicular disorder in male mice: Via fecal microbiota transplantation
2022
Wen, Siyue | Zhao, Yu | Liu, Shanji | Yuan, Hongbin | You, Tao | Xu, Hengyi
Microplastics (MPs), an emerging environmental pollutant, have been clarified to induce testicular disorder in mammals. And the current studies have delineated a correlation between gut microbiota and male reproduction. However, it's still unclear whether gut microbiota gets involved in MPs-induced reproductive toxicity. In this work, we constructed a mouse model drinking 5 μm polystyrene-MPs (PS-MPs) at the concentrations of 100 μg/L and 1000 μg/L for 90 days. Evident histological damage, spermatogenetic disorder and hormones synthesis inhibition were observed in PS-MPs exposed mice. With fecal microbiota transplantation (FMT) trial, the recipient mice exhibited gut microbial alteration, and the elevated abundance of Bacteroides and Prevotellaceae_UCG-001 were positively correlated with testicular disorder according to spearman correlation analysis. Mechanistically, increased proportion of pro-inflammatory bacteria may drive translocation of T helper 17 (Th17) cells, resulting in overproduced interleukin (IL)-17 A and downstream inflammatory response in both the mice exposed to PS-MPs and corresponding recipient mice. In summary, our findings revealed the critical role of gut microbiota in PS-MPs-induced reproductive toxicity, and tried to elucidate the underlying mechanism of gut microbial dysregulation-mediated IL-17 A signaling pathway. Furthermore, this study also provides the research basis for gut microbiota-targeted treatment of male infertility in the future.
Mostrar más [+] Menos [-]Microcystin pollution in lakes and reservoirs: A nationwide meta-analysis and assessment in China
2022
Wei, Huimin | Jia, Yunlu | Wang, Zhi
The frequent occurrence of microcystins (MCs) has caused a series of water security issues worldwide. Although MC pollution in natural waters of China has been reported, a systematic analysis of the risk of MCs in Chinese lakes and reservoirs is still lacking. In this study, the distribution, trend, and risk of MCs in Chinese lakes and reservoirs were comprehensively revealed through meta-analysis for the first time. The results showed that MC pollution occurrence in numerous lakes and reservoirs have been reported, with MC pollution being distributed in the waters of 15 provinces in China. For lakes, the maximum mean total MC (TMC) and dissolved MC (DMC) concentrations occurred in Lake Dianchi (23.06 μg/L) and Lake Taihu (1.00 μg/L), respectively. For reservoirs, the maximum mean TMC and DMC concentrations were detected in Guanting (4.31 μg/L) and Yanghe reservoirs (0.98 μg/L), respectively. The TMC concentrations in lakes were significantly higher than those in the reservoirs (p < 0.05), but no difference was observed in the DMC between the two water bodies (p > 0.05). Correlation analysis showed that the total phosphorus concentrations, pH, transparency, chlorophyll a, and dissolved oxygen were significantly related to the DMC in lakes and reservoirs. The ecological risks of DMC in Chinese lakes and reservoirs were generally at low levels, but high or moderate ecological risks of TMC had occurred in several waters, which were not negligible. Direct drinking water and consumption of aquatic products in several MC-polluted lakes and reservoirs may pose human health risks. This study systematically analyzed the pollution and risk of MCs in lakes and reservoirs nationwide in China and pointed out the need for further MC research and management in waters.
Mostrar más [+] Menos [-]Occurrence and distribution of organophosphate flame retardants in seawater and sediment from coastal areas of the East China and Yellow Seas
2022
Fang, Lidan | Liu, Aifeng | Zheng, Minggang | Wang, Ling | Hua, Yi | Pan, Xin | Xu, Hongyan | Chen, Xiangfeng | Lin, Yongfeng
Organophosphates (OPEs) are manmade organic pollutants that are widely used as flame retardants, plasticizers, and antifoaming and hydraulic agents. In this study, seven OPEs in seawater and sediment from the Yellow Sea and East China Sea were determined to study the distribution and diffusion behavior, and to evaluate the environmental risks. The ΣOPEs in the seawater and sediments ranged from below the method detection limit (<MDL) to 497.40 ng/L and from < MDL to 66.50 ng/g dw, respectively. Tri-n-butyl phosphate (TnBP), tris-(1, 3-Dichloro-2-Propyl) phosphate (TDCPP), and tri-meta-cresyl phosphate (TmCP) were the dominant OPEs in the seawater and sediments. OPEs were mainly distributed in coastal areas and the South Yellow Sea, indicating that they are mainly affected by land-based pollution and ocean currents. Fugacity analysis shows that tri-para-cresyl phosphate (TpCP) was in a state of equilibrium, while TDCPP, TnBP, and TmCP other OPEs tended to diffuse from sediment to water. The diffusion behavior of OPEs is mainly affected by their chemical properties. Hazard quotient (HQ) values of TmCP and TpCP in sediment samples were >1.0, indicating high ecological risks to aquatic organisms.
Mostrar más [+] Menos [-]Combined amendment improves soil health and Brown rice quality in paddy soils moderately and highly Co-contaminated with Cd and As
2022
Jiang, Yi | Zhou, Hang | Gu, Jiao-Feng | Zeng, Peng | Liao, Bo-Han | Xie, Yun-He | Ji, Xiong-Hui
In situ remediation technology applied aims to not only decrease cadmium (Cd) and arsenic (As) uptake by rice but also improve soil health and rice quality in contaminated paddy soils. Here the effects of a combined amendment, consisting of limestone, iron powder, silicon fertilizer, and calcium-magnesium-phosphate fertilizer, with three application rates (0, 450, and 900 g m⁻²) on soil health, rice root system, and brown rice quality were compared in moderately versus highly Cd and As co-contaminated paddy fields. After the amendment application, soil pH, cation exchange capacity, four kinds of soil enzyme activities increased (sucrase, urease, acid phosphatase, and catalase), and concentrations of leached Cd/As decreased, as measured by the DTPA (diethylene triamine pentaacetic acid) and TCLP (toxicity characteristic leaching procedure). Changes in the above soil indicators promoted soil health. In both fields, the dithionite-citrate-bicarbonate (DCB)-Fe and DCB-Mn concentration in iron plaque increased and root length became longer. Changes in the above root system indicators reduced the root system's absorption of Cd and As but increased that of nutrients. Under 900 g m⁻² treatment, the Cd concentration in brown rice of two sites decreased by 55.8% and 28.9%, likewise inorganic As (iAs) decreased by 50.0% and 21.1%, whereas essential amino acids increased by 20.4% and 20.0%, respectively. Furthermore, the Cd and iAs concentrations in brown rice were <0.2 mg kg⁻¹ (maximum contaminant level of Cd and iAs in the Chinese National Food Safety Standards GB2762-2017 for brown rice) under the 900 g m⁻² in the moderately contaminated field. These results suggest the combined amendment can improve soil health and brown rice quality in the moderately and highly Cd- and As-co-contaminated paddy soils, offering potential eco-friendly and efficient remediation material for applications in such polluted paddy soils.
Mostrar más [+] Menos [-]Dual-carbon isotope constraints on source apportionment of black carbon in the megacity Guangzhou of the Pearl River Delta region, China for 2018 autumn season
2022
Jiang, Fan | Liu, Junwen | Cheng, Zhineng | Ding, Ping | Xu, Yuanqian | Zong, Zheng | Zhu, Sanyuan | Zhou, Shengzhen | Yan, Caiqing | Zhang, Zhisheng | Zheng, Junyu | Tian, Chongguo | Li, Jun | Zhang, Gan
Black carbon (BC) aerosol negatively affects air quality and contributes to climate warming globally. However, little is known about the relative contributions of different source control measures to BC reduction owing to the lack of powerful source-diagnostic tools. We combine the fingerprints of dual-carbon isotope using an optimized Bayesian Markov chain Monte Carlo (MCMC) scheme and for the first time to study the key sources of BC in megacity Guangzhou of the Pearl River Delta (PRD) region, China in 2018 autumn season. The MCMC model-derived source apportionment of BC shows that the dominant contributor is petroleum combustion (39%), followed by coal combustion (34%) and biomass burning (27%). It should be noted that the BC source pattern is highly sensitive to the variations of air masses transported with an enhanced contribution of fossil source from the eastern area, suggesting the important impact of regional atmospheric transportation on the BC source profile in the PRD region. Also, we further found that fossil fuel combustion BC contributed 84% to the total BC reduction during 2013–2018. The response of PM₂.₅ concentration to the ¹⁴C-derived BC source apportionment is successfully fitted (r = 0.90) and the results predicted that it would take ∼6 years to reach the WHO PM₂.₅ guideline value (10 μg m⁻³) for the PRD region if the emission control measures keep same as they are at present. Taken together, our findings suggest that dual-carbon isotope is a powerful tool in constraining the source apportionment of BC for the evaluations of air pollution control and carbon emission measures.
Mostrar más [+] Menos [-]A biocide delivery system composed of nanosilica loaded with neem oil is effective in reducing plant toxicity of this biocide
2022
Goetten de Lima, Gabriel | Wilke Sivek, Tainá | Matos, Mailson | Lundgren Thá, Emanoela | de Oliveira, Ketelen Michele Guilherme | Rodrigues de Souza, Irisdoris | de Morais de Lima, Tielidy Angelina | Cestari, Marta Margarete | Esteves Magalhães, Washington Luiz | Hansel, Fabrício Augusto | Morais Leme, Daniela
One possible way to reduce the environmental impacts of pesticides is by nanostructuring biocides in nanocarriers because this promotes high and localized biocidal activity and can avoid toxicity to non-target organisms. Neem oil (NO) is a natural pesticide with toxicity concerns to plants, fish, and other organisms. Thus, loading NO in a safe nanocarrier can contribute to minimizing its toxicity. For this study, we have characterized the integrity of a nanosilica-neem oil-based biocide delivery system (SiO₂NP#NO BDS) and evaluated its effectiveness in reducing NO toxicity by the Allium cepa test. NO, mainly consisted of unsaturated fatty acids, was well binded to the SiO₂NP with BTCA crosslinker. Overall, this material presented all of its pores filled with the NO with fatty acid groups at both the surface and bulk level of the nanoparticle. The thermal stability of NO was enhanced after synthesis, and the NO was released as zero-order model with a total of 20 days without burst release. The SiO₂NP#NO BDS was effective in reducing the individual toxicity of NO to the plant system. NO in single form inhibited the seed germination of A. cepa (EC₅₀ of 0.38 g L⁻¹), and the effect was no longer observed at the BDS condition. Contrarily to the literature, the tested NO did not present cyto- and geno-toxic effects in A. cepa, which may relate to the concentration level and composition.
Mostrar más [+] Menos [-]Comparative analysis of transcriptomic points-of-departure (tPODs) and apical responses in embryo-larval fathead minnows exposed to fluoxetine
2022
Alcaraz, Alper James G. | Baraniuk, Shaina | Mikulášek, Kamil | Park, Bradley | Lane, Taylor | Burbridge, Connor | Ewald, Jessica | Potěšil, David | Xia, Jianguo | Zdráhal, Zbyněk | Schneider, David | Crump, Doug | Basu, Niladri | Hogan, Natacha | Brinkmann, Markus | Hecker, Markus
Current approaches in chemical hazard assessment face significant challenges because they rely on live animal testing, which is time-consuming, expensive, and ethically questionable. These concerns serve as an impetus to develop new approach methodologies (NAMs) that do not rely on live animal tests. This study explored a molecular benchmark dose (BMD) approach using a 7-day embryo-larval fathead minnow (FHM) assay to derive transcriptomic points-of-departure (tPODs) to predict apical BMDs of fluoxetine (FLX), a highly prescribed and potent selective serotonin reuptake inhibitor frequently detected in surface waters. Fertilized FHM embryos were exposed to graded concentrations of FLX (confirmed at < LOD, 0.19, 0.74, 3.38, 10.2, 47.5 μg/L) for 32 days. Subsets of fish were subjected to omics and locomotor analyses at 7 days post-fertilization (dpf) and to histological and biometric measurements at 32 dpf. Enrichment analyses of transcriptomics and proteomics data revealed significant perturbations in gene sets associated with serotonergic and axonal functions. BMD analysis resulted in tPOD values of 0.56 μg/L (median of the 20 most sensitive gene-level BMDs), 5.0 μg/L (tenth percentile of all gene-level BMDs), 7.51 μg/L (mode of the first peak of all gene-level BMDs), and 5.66 μg/L (pathway-level BMD). These tPODs were protective of locomotor and reduced body weight effects (LOEC of 10.2 μg/L) observed in this study and were reflective of chronic apical BMDs of FLX reported in the literature. Furthermore, the distribution of gene-level BMDs followed a bimodal pattern, revealing disruption of sensitive neurotoxic pathways at low concentrations and metabolic pathway perturbations at higher concentrations. This is one of the first studies to derive protective tPODs for FLX using a short-term embryo assay at a life stage not considered to be a live animal under current legislations.
Mostrar más [+] Menos [-]The role of dietary factors on blood lead concentration in children and adolescents - Results from the nationally representative German Environmental Survey 2014–2017 (GerES V)
2022
Hahn, Domenica | Vogel, Nina | Höra, Christian | Kämpfe, Alexander | Schmied-Tobies, Maria | Göen, Thomas | Greiner, Annette | Aigner, Annette | Kolossa-Gehring, Marike
In industrialized nations, human lead exposure has decreased significantly in recent decades. Nevertheless, due to its toxic effects, this heavy metal remains a public health concern with children and adolescents being particularly at risk. In Europe nowadays, oral intake via food and drinking water is the predominant exposure pathway for lead. The objective of the present study was to investigate the association between dietary factors and blood lead (PbB) level of 3- to 17-year-old children and adolescents living in Germany, using data from the fifth German Environmental Health Survey (GerES V) and the Child and Adolescent Health Survey (KiGGS Wave 2). GerES V and KiGGS Wave 2 are two national population-representative studies conducted between 2014 and 2017, including measurement of lead concentrations in blood from 720 children and adolescents aged 3–17 years (mean age = 10.21, SD age = 4.36). Using multiple linear regression, sociodemographic and environmental characteristics as well as dietary factors could be identified as significant exposure determinants of PbB concentrations. Lead intake via domestic tap water was the strongest predictor of elevated PbB levels with 27.6% (p-value< .001) higher concentrations of highest compared to none lead intake via tap water. Other foods which were found to be relevant to PbB levels were meat, fruit, and fruit juice. While meat or fruit consumption were each associated with about 13% (p-value < .05) lower PbB levels, fruit juice drinking was associated with up to 12.2% (p-value = .04) higher PbB levels. In conclusion, results indicate the importance of dietary habits for lead exposure in children and adolescents. To protect vulnerable groups, it is recommended that future research and lead-reducing measures pay more attention to dietary links.
Mostrar más [+] Menos [-]Tracing water-soluble, persistent substances in the Black Sea
2022
Miladinova, S. | Stips, A. | Macias Moy, D. | Garcia-Gorriz, E.
We apply a tracer model linked with a 3D circulation model to simulate transport and fate of water-soluble persistent substances in the Black Sea that do not bioaccumulate to a considerable extent. The model uses specified degradation time and identical concentrations in the rivers to build a correlation between average concentration in the basin and half-life (DT50). The average concentration in certain sub-regions of the Black Sea can be estimated using an exponential dependence of DT50, if DT50 and concentration in rivers are known. Averaging is performed on the simulations from 2000 to 2019 with real atmospheric forcing and river runoff. A well-defined seasonal cycle is evident for the average shelf concentration, while the average concentration in the deep region does not show a pronounced seasonal cycle or inter-annual variations. With the help of the existing observational data, we estimate DT50 and concentration in the rivers for carbamazepine, sulfamethoxazole and terbuthylazine. Atrazine and simazine are believed to have accumulated in the basin for a long time due to their widespread use in the past and the slow rate of degradation in the marine environment.
Mostrar más [+] Menos [-]Impact of deep basin terrain on PM2.5 distribution and its seasonality over the Sichuan Basin, Southwest China
2022
Shu, Zhuozhi | Zhao, Tianliang | Liu, Yubao | Zhang, Lei | Ma, Xiaodan | Kuang, Xiang | Li, Yang | Huo, Zhaoyang | Ding, QiuJi | Sun, Xiaoyun | Shen, Lijuan
The terrain effect on atmospheric environment is poorly understood in particular for the polluted region with underlying complex topography. Therefore, this study targeted the Sichuan Basin (SCB), a deep basin with severe PM₂.₅ pollution enclosed by the eastern Tibetan Plateau (TP), Yunnan-Guizhou Plateaus (YGP) and mountains over Southwest China, and we investigated the terrain effect on seasonal PM₂.₅ distribution and the meteorological mechanism based on the WRF-Chem simulation with stuffing the basin topography. It is characterized that the three-dimensional distribution of topography-induced PM₂.₅ concentrations over the SCB with the seasonal shift of regional PM₂.₅ averages from approximately 30 μg m⁻³ in summer to 90 μg m⁻³ in winter at surface layer and from summertime 10 μg m⁻³ to wintertime 30 μg m⁻³ in the lower free troposphere. Such basin-forced PM₂.₅ changes presented the vertically monotonical declines concentrated within the lower troposphere below 3.6 km in spring, 2.3 km in summer, 2.6 km in autumn and 4.8 km in winter. Impacts of deep basin aggravated PM₂.₅ accumulation within the SCB and transport toward the surrounding plateaus contributing approximately 50–90% to PM₂.₅ levels over the regions of eastern TP and northern YGP. In the SCB, atmospheric thermal structure in the lower troposphere could build a vertical convergence layer between the boundary layer and free troposphere, acting as a lid inhibiting air diffusion, which was regulated by the terrain effects on interactions of westerlies and Asian monsoons, especially the wintertime strong warm lid deteriorating air pollution in the SCB. Furthermore, warm and humid air conditions within the basin prompted sulfur oxidation ratio by +0.02 and nitrogen oxidation ratio by +0.22 effectively producing the secondary PM₂.₅ in atmospheric environment.
Mostrar más [+] Menos [-]