Refinar búsqueda
Resultados 1341-1350 de 3,207
Rhamnolipid Transport in Biochar-Amended Agricultural Soil Texto completo
2015
Vu, Kien Anh | Tawfiq, Kamal | Chen, Gang
Rhamnolipid is a biosurfactant produced by several Pseudomonas species, and can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid is believed to have minimal adverse impact on the soil and groundwater after usage. Applications of rhamnolipid to improve irrigation in agricultural soils thus have obvious advantages over other chemical wetting agents, especially under drought conditions. Due to global warming, soil amendment with biochar has been commonly practiced in agricultural soils to increase the soil water-holding capacity. As such, rhamnolipid transport in biochar-amended agricultural soils needs to be characterized. In this research, we found that rhamnolipid transport in biochar-amended agricultural soils was hindered by retardation (equilibrium adsorption) and deposition (kinetic adsorption), which was well represented by the advection-dispersion equation based on a local equilibrium assumption. A linear equilibrium adsorption was assumed in the advection-dispersion equation simulation, which was proved to be acceptable by studying the breakthrough curves. Both rhamnolipid equilibrium adsorption and kinetic adsorption increased with the increase of the biochar content in the agricultural soil.
Mostrar más [+] Menos [-]Effect of Fulvic Acid on Adsorptive Removal of Cr(VI) and As(V) from Groundwater by Iron Oxide-Based Adsorbents Texto completo
2015
Uwamariya, V. | Petrusevski, B. | Slokar, Y. M. | Aubry, C. | Lens, P. N. L. | Amy, G. L.
Natural contamination has become a challenging problem in drinking water production due to metal contamination of groundwater throughout the world, and arsenic and chromium are well-known toxic elements. In this study, iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effects of fulvic acid (FA) on the adsorptive removal of Cr(VI) and As(V) from synthetic groundwater. IOCS and GFH were characterized by SEM/EDS, and experiments were performed at different pH levels (6, 7, and 8). The surface of IOCS and GFH showed a high content of Fe and O (75 and 60 % of the atomic composition, respectively), suggesting that they can highly effectively adsorb Cr(VI) and As(V). Adsorption tests with the simultaneous presence of As(V) and FA, on the one hand, and Cr(VI) with FA, on the other hand, revealed that the role of FA on chromate and arsenate adsorption was insignificant at almost all pH values investigated with both adsorbents. A small influence as a result of FA was only observed for the removal of As(V) by IOCS at pH 6 with a decrease of 13 and 23 % when 2 and 5 mg/l were added to the synthetic water, respectively. It was also found that organic matter (OM) was leached from the IOCS during batch adsorption experiments. The use of FEEM revealed that humic-like, fulvic-like, and protein-like organic matter fractions are present on the IOCS surface.
Mostrar más [+] Menos [-]Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil Texto completo
2015
Silva, Mario Marques, Jr | Leao, Danilo Junqueira | Moreira, Ícaro Thiago Andrade | Oliveira, Olívia Maria Cordeiro de | de Souza Queiroz, Antônio Fernando | Ferreira, Sergio Luis Costa
This paper proposes an extraction procedure for the speciation analysis of inorganic antimony in sediment samples using slurry sampling and hydride generation atomic absorption spectrometry. The optimization step of extraction of the species was performed employing a full two-level factorial design (2³) and a Box-Behnken matrix where the studied factors in both experiments were: extraction temperature, ultrasonic radiation time, and hydrochloric acid concentration. Using the optimized conditions, antimony species can be extracted in closed system using a 6.0 M hydrochloric acid solution at temperature of 70 °C and an ultrasonic radiation time of 20 min. The determination of antimony is performed in presence of 2.0 M hydrochloric acid solution using HG AAS by external calibration technique with limits of detection and quantification of 5.6 and 19.0 ng L⁻¹ and a precision expressed as relative standard deviation of 5.6 % for an antimony solution with concentration of 6.0 μg L⁻¹. The accuracy of the method was confirmed by analysis of two certified reference materials of sediments. For a sample mass of sediment of 0.20 g, the limits of detection and quantification obtained were 0.70 and 2.34 ng g⁻¹, respectively. During speciation analysis, antimony(III) is determined in presence of citrate, while total antimony is quantified after reduction of antimony(V) to antimony(III) using potassium iodide and ascorbic acid. The method was applied for analysis of six sediment samples collected in São Paulo Estuary (Bahia State, Brazil). The antimony contents obtained varied from 45.3 to 89.1 ng g⁻¹ for total antimony and of 17.7 to 31.4 ng g⁻¹ for antimony(III). These values are agreeing with other data reported by the literature for this element in uncontaminated sediment samples.
Mostrar más [+] Menos [-]Effective Concentration of Elements in Root Zone of Norway Spruce Stand 16 Years After Fertilization Probed with DGT Texto completo
2015
Jakl, Michal | Jaklová Dytrtová, Jana | Kuneš, Ivan | Baláš, Martin
The changes in the availability of selected elements (Ca, Mg, K, Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) 16 years after amphibolite treatment were studied in the root zone of spruce (40 and 80 cm from the stem base) using the diffusive gradient in thin film (DGT) technique. The effective concentrations of some of the tested elements significantly increased (Ca (34 %), Mg (31 %), K (65 %), Al (143 %), Fe (242 %), and Pb (27 %)) in 80 cm distance from the stem, whereas the total and the water-soluble concentrations of the elements did not differ from the control. The changes in effective concentrations of the elements in soil were related to higher vitality of the trees on amended soil in contrast to the control.
Mostrar más [+] Menos [-]Removal of Dissolved Organic Carbon from Oily Produced Water by Adsorption onto Date Seeds: Equilibrium, Kinetic, and Thermodynamic Studies Texto completo
2015
Al.Haddabi, Mansour | Vuthaluru, Hari | Znad, Hussein | Ahmed, M. (Mushtaque)
The feasibility of date seeds as a new low-cost natural adsorbent for the removal of dissolved organic carbon (DOC) from oily produced water was investigated. The aim of this study was to elucidate the mechanism associated with the removal of DOC and to find the best equilibrium isotherms and kinetic models for DOC removal in batch adsorption experiments. The effect of various physicochemical parameters such as initial DOC concentration (18.5–93.5 mg/L), solution pH (4–9), temperature (25–45 °C), and date seeds dosages (0.5–2.0 g) was evaluated. The equilibrium stage was attained after a contact time of 120 min. The maximum DOC removal was 82 % for 93.5 mg/L of DOC concentration. The equilibrium data were well represented by the Langmuir isotherm. The maximum monolayer adsorption capacity of date seeds was found to be 74.62 mg/g. The separation factor, R L, from the Langmuir equation and the Freundlich constant, n, indicated a favorable adsorption. The kinetic studies indicated that the adsorption process follows the pseudo-second-order kinetics. The adsorption of DOC is governed by both surface and pore diffusion. The results revealed that the DOC uptake decreases when temperature and pH increases. The adsorption process has been found exothermic in nature, and the thermodynamic parameters were determined. The Langmuir isotherm model equation was adopted to design a single-stage batch absorber for DOC adsorption onto date seeds. The study demonstrated that date seeds can be considered as a promising low-cost adsorbent for the removal of DOC from oily produced water.
Mostrar más [+] Menos [-]Assessing the Ecotoxicity of Gold Mine Tailings Utilizing Earthworm and Microbial Assays Texto completo
2015
van Coller-Myburgh, Charné | van Rensburg, Leon | Maboeta, Mark
Problems associated with mining are the disposal of wastes on tailing disposal facilities (TDFs). The aim of this study was to determine the ecotoxicity of gold mine tailings by using earthworm bioassays, earthworm biomarkers and enzymatic analyses. End points included changes in biomass, reproduction, lysosomal membrane stability, tissue metal concentrations, and selected enzymatic activities. Results indicated high concentrations of Ni in the material as well as bioaccumulation of lead and arsenic in the earthworm body tissue after exposure. Enzymatic activity was higher in revegetated tailings than in unrehabilitated tailings. It was concluded that TDF and surrounding areas have an acidic pH which affects earthworms and metal bioavailability. Soil enzymatic activities were a sensitive indicator of metal pollution in mining areas. Growth, reproduction and lysosomal membrane stability of earthworms have also been shown to be sensitive end points to assess the ecotoxic effects of gold TDF.
Mostrar más [+] Menos [-]Developing Critical Loads of Nitrate and Sulfate Deposition to Watersheds of the Great Smoky Mountains National Park, USA Texto completo
2015
Zhou, Qingtao | Driscoll, Charles T. | Moore, Stephen E. | Kulp, Matt A. | Renfro, James R. | Schwartz, John S. | Cai, Meijun | Lynch, Jason A.
Long-term impacts of acidic deposition on the Great Smoky Mountains National Park (GRSM) include elevated inputs of sulfate, nitrate, and ammonium; the depletion of available nutrient cations from soil; and acidification of high-elevation streams. Critical loads and target loads (CLs/TLs) are useful tools to help guide future air quality management. We evaluated past and potential future effects of nitrate and sulfate deposition for 12 watersheds in the GRSM, USA, using the hydrochemical model, photosynthesis evapotranspiration biogeochemical (PnET-BGC). Two of the streams studied were listed by the state of Tennessee as impaired due to low stream pH. We reconstructed historical meteorological, atmospheric deposition, and land disturbance data for study watersheds for the period 1850 to present for model hindcasts. As future emissions are expected to decline, the model was run under a range of future scenarios from 2008 to 2200 of decreases in sulfate, nitrate, and ammonium and combinations of sulfate and nitrate deposition to estimate CLs and TLs of how watersheds might respond to emission control strategies. Model simulations of stream chemistry generally agreed with long-term (>10 years) observations. Model hindcasts indicate that watersheds in the GRSM are inherently sensitive to acidic deposition. Simulated mean projected stream ANC of 71 μeq/L (range 32 to 107 μeq/L) prior to industrial development (~1850) decreases in response to historical acidic deposition to 33 μeq/L (−13 to 88 μeq/L) in 2007. Future model projections show that decreases in sulfate deposition result in smaller increases in stream ANC compared with equivalent decreases in nitrate deposition; simultaneous controls on nitrate and sulfate deposition are more effective in ANC increases than individual control of nitrate or sulfate. Although there are no current programs in the USA to control ammonia emissions, model simulations suggest that decreases in ammonium deposition could also help mitigate acidification to a greater extent than equivalent controls on nitrate deposition.
Mostrar más [+] Menos [-]A New Functionalized Resin for Preconcentration and Determination of Cadmium, Cobalt, and Nickel in Sediment Samples Texto completo
2015
Lemos, Valfredo Azevedo | do Nascimento, Geisa Santos | Nunes, Leane Santos
Chelating reagents impregnated or incorporated into solid sorbents have been widely used in the preconcentration of metal species. In this work, polystyrene-divinylbenzene functionalized with 2-hydroxyacetophenone was used for the preconcentration and determination of cadmium, cobalt, and nickel in sediment samples by flame atomic absorption spectrometry. The sorbent was characterized by infrared spectroscopy and scanning electron microscopy. The influence of variables on the extraction of the metal ions was studied. Under optimized conditions, the method showed enrichment factors of 20 (Cd), 37 (Co), and 32 (Ni) and detection limits of 0.1 (Cd), 0.8 (Co), and 0.6 μg L⁻¹(Ni). The accuracy of the method was tested by analysis of a certified reference material composed of inorganics in marine sediment (NIST 2702). The method was applied to the determination of cadmium, cobalt, and nickel in real sediment samples. Cadmium and cobalt were not found in the sediment samples. Nickel was found in two samples (5.2 and 8.2 μg g⁻¹).
Mostrar más [+] Menos [-]Differential Effects of Cr(VI) on the Ultrastructure of Chloroplast and Plasma Membrane of Salvinia minima Growing in Summer and Winter. Relationships With Lipid Peroxidation, Electrolyte Leakage, Photosynthetic Pigments, and Carbohydrates Texto completo
2015
Prado, Carolina | Prado, Fernando E. | Pagano, Eduardo | Rosa, Mariana
Seasonal variations of chloroplast thylakoids and plasma membrane ultrastructure and changes in some biochemical parameters (e.g., metal accumulation, photosynthetic pigments, carbohydrates, lipid peroxidation, and electrolyte leakage) were studied in fronds of Salvinia minima plants exposed to increasing concentrations of Cr(VI) in both winter and summer. Disorganization of stacked (grana) and unstacked (stroma lamellae) thylakoids was greater in winter chloroplasts than in summer chloroplasts. Plasma membrane was less affected than thylakoids. Photosynthetic pigments, lipid peroxidation, soluble sugars, and starch were affected differently in winter and summer. Our results suggest that much greater ultrastructural alterations and changes in metabolite levels occurring in winter fronds are produced by higher oxidative stress resulting from the interactive effect between low temperature, low solar irradiance, and Cr(VI) toxicity, rather than from metal accumulation per se. Seasonal differences occurring in chloroplast ultrastructure and metabolite concentrations were discussed in relation to metabolic implications. Evaluated parameters represent a relevant approach to enhance knowledge on performance and fitness of plants exposed to heavy metals under fluctuating environmental conditions. This work also indicates that selection of suitable macrophytes to remove Cr(VI) requires an additional analyzing focus on structural and metabolic interactions that occur in plants exposed to heavy metals in contrasting seasons.
Mostrar más [+] Menos [-]Removal of p-Nitrophenol from Aqueous Solution Using Brazilian Peat: Kinetic and Thermodynamic Studies Texto completo
2015
Jaerger, S. | dos Santos, A. | Fernandes, A. N. | Almeida, C. A. P.
Removal of p-nitrophenol (PNP) from aqueous solutions using fibrous peat has been investigated in this study by batch adsorption experiments. Factors that can affect the adsorption process, such as pH, temperature, initial PNP concentration and contact time, have been investigated. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) measurements have also been obtained in order to study the adsorption mechanism of PNP by peat. The Langmuir and Freundlich equations have been applied to investigate the equilibrium. The data fitted the Langmuir isotherm well, with the maximum adsorption capacity decreasing with temperature from 23.4 to 16.1 mg g⁻¹. In general, the adsorption equilibrium was attained within 100 min. For the kinetics study, the best fit was obtained by the pseudo-second-order model instead of the pseudo-first-order model, both of which applied to the experimental data, whereas the results of intraparticle diffusion show a two-step adsorption process. The activation energy value of 70.31 kJ mol⁻¹, calculated from the Arrhenius equation, indicated a predominantly chemical adsorption, whereas the thermodynamic parameters, obtained by the van’t Hoff equation, were exothermic and spontaneous in nature.
Mostrar más [+] Menos [-]