Refinar búsqueda
Resultados 1371-1380 de 2,459
Genotoxic Effects of Heavy Metal Mixture in Drosophila melanogaster: Expressions of Heat Shock Proteins, RAPD Profiles and Mitochondrial DNA Sequence
2014
Doğanlar, Zeynep Banu | Doğanlar, Oğuzhan | Tabakçıoğlu, Kıymet
The genotoxic effects of four heavy metal mixtures on Drosophila melanogaster were investigated with reference to gene expressions of heat shock proteins (HSP26, HSP60, HSP70 and HSP83), DNA profiles, and mitochondrial NADH dehydrogenase sequence. Adult D. melanogaster flies were treated with a mixture of four (Fe, Cu, Cd and Pb) heavy metals (HMs) in three different concentrations, which were selected based on one higher dose (HM3) and one lower dose (HM1) relative to the permitted limits (HM2) in drinking water at 1st, 5th and 10th days. It was determined that the amount of the accumulated heavy metals and the expressions of the HSP genes were changed with increasing exposure time. The accumulations of Cd and Pb were increased with increasing exposure time; additionally, the HSP expression patterns were determined as HSP70 > HSP60 > HSP26 > HSP83 HM1 (5th day), HM2 (5th day and 10th day), and HM3 (all exposure times). It was also determined that the application of the heavy metal mixture affected the random amplified polymorphic DNA (RAPD) profiles and the mitochondrial NADH dehydrogenase sequence of D. melanogaster. The highest base pair changes (9 bp) were determined at the HM2 concentration (permissible limits in drinking water) on the 1st day of treatment. Therefore, it was shown that mixture of four heavy metals caused a genotoxic effect and D. melanogaster is a useful model organism for heavy metal-induced genotoxicity studies.
Mostrar más [+] Menos [-]Estimation of Soil Base Cation Weathering Rates with the PROFILE Model to Determine Critical Loads of Acidity for Forested Ecosystems in Pennsylvania, USA: Pilot Application of a Potential National Methodology
2014
Phelan, Jennifer | Belyazid, Salim | Kurz, Daniel | Guthrie, Scott | Cajka, James | Sverdrup, Harald | Waite, Randall
Base cation weathering (BCw) rate is one of the most influential yet difficult to estimate parameters in the calculation of critical acid loads of nitrogen (N) and sulfur (S) deposition for terrestrial systems. Only the clay correlation–substrate method, a simple empirical model, has been used for estimating BCw rates for forest ecosystems in the conterminous USA and may not be suitable for application at all sites without calibration or revision. An alternate model, PROFILE, may offer an improved method to estimate BCw rates. It is a transferable, process-based model that simulates the weathering rates of groups of minerals. The objective of this study was to evaluate PROFILE using national datasets as a method to estimate BCw rates for forests in the USA, focusing on Pennsylvania (PA) as the first test state. The model paired with national datasets was successfully applied at 51 forested sites across PA. Weathering rates ranged from 119 to 9,245 eq ha⁻¹ year⁻¹ and were consistent with soil properties and regional geology. Comparisons of terrestrial critical acid loads with 2002 N and S deposition showed critical load exceedances at 53 % of the sites. This trial evaluation of PROFILE paired with national datasets in PA establishes that there are sufficient data to support the estimation of BCw rates and determination of critical acid loads for forests in the USA. However, the paired method should be applied in other locations to further evaluate the performance of the model in different regions of the country.
Mostrar más [+] Menos [-]Effects of Humic Acid and Solution Chemistry on the Retention and Transport of Cerium Dioxide Nanoparticles in Saturated Porous Media
2014
Lv, Xueyan | Gao, Bin | Sun, Yuanyuan | Shi, Xiaoqing | Xu, Hongxia | Wu, Jichun
When released into natural aquatic systems, cerium oxide (CeO₂) nanoparticles (NPs) may have toxic effects to the ecosystems and public health; it is thus important to understand their environmental fate and transport. This work studied the effects of humic acid (HA) concentrations (0–10 mg L⁻¹) and solution chemistry (ionic strength (IS) and pH) on the retention and transport of CeO₂NPs in water-saturated porous media under environmental relevant conditions. HA and IS showed remarkable effect on the retention and transport of CeO₂NPs in the porous media. Even at low concentrations (i.e., 5 and 10 mg L⁻¹), HA stabilized CeO₂NPs in the suspensions by introducing both negative surface charge and steric repulsion and thus enhanced their mobility in the porous media. When solution HA concentration increased or ionic strength decreased, mobility of CeO₂NPs in the porous media enhanced dramatically. Solution pH, however, had little influence on the mobility of the CeO₂NPs under the tested experimental conditions, and increasing solution pH only slightly increased the transport of the NPs. Mathematical models were applied to describe the experimental data. Predictions from the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory and advection–dispersion–reaction (ADR) model matched the experimental data well.
Mostrar más [+] Menos [-]Multixenobiotic Resistance Mechanism in Gills of Reared vs. Wild Mediterranean Mussel Mytilus galloprovincialis (Lamarck, 1819)
2014
Bošnjak, Ivana | Hrabar, Jerko | Petrić, Mirela | Lušić, Jelena | Šver, Lidija | Mladineo, Ivona
Mussel (Mytilus galloprovincialis (Lamarck, 1819)) is directly exposed to sea water contamination that elicits significant physiological and cellular response, although its extent mounted in aquaculture-reared in comparison to wild bivalve populations is scarcely known. Therefore, we have compared contamination biomarkers in mussels from reared (Marina farm) and wild, anthropogenically affected site (Vranjic Bay). While predictably, the levels of metals (Cu, Cd, Pb, Zn, Fe, and Hg) in whole bivalve tissues determined by atomic absorption spectrophotometry resulted in significantly higher concentrations in wild mussels, accompanied by elevated number of apoptotic cells in gills, the activity of multixenobiotic resistance defense mechanism (MXR), measured as the accumulation rate of model substrate rhodamine B (RB) gave contrasting results. The functional RB assay evidenced a lower MXR efflux activity in the gill tissue of wild mussels, indicating two possible scenarios that will need further focus: (1) persisting sea water pollution increased cell damage of bivalve gill cells and consequently led to leakage of the RB into cytoplasm and dysfunctional MXR efflux in wild mussels; or/and (2) a mixture of different toxic compounds present in Vranjic Bay sea water induced oversaturation of MXR efflux, inducing elevated accumulation of the dye. Consequently, it seems that an efficient physiological functioning of MXR in wild mussels is strongly hampered by existence of an unknown quantity of sea water pollutants that may endanger intrinsic organismal defense system and lead toward the enhancement of toxicity.
Mostrar más [+] Menos [-]Changes in pH, dissolved organic matter and Cd species in the rhizosphere soils of Cd phytostabilizer Athyrium wardii (Hook.) Makino involved in Cd tolerance and accumulation
2014
Zhang, Shujin | Li, Tingxuan | Zhang, Xizhou | Yu, Haiying | Zheng, Zicheng | Wang, Yongdong | Hao, Xiaoqing | Pu, Yong
Phytostabilization has great practical significance and flexibility in the ecological restoration of mining tailings and remediation of heavy metals polluted soils. However, potential use of metallophytes in phytostabilization is limited by a lack of knowledge of many basic plant processes. A mining ecotype (ME) Athyrium wardii, Pb/Cd phytostabilizer, and a non-mining ecotype (NME) A. wardii were grown in a pot experiment to investigate the chemical characteristics of the rhizosphere when exposed to the Cd polluted soils. Rhizobags were used to collect rhizosphere and bulk soils, separately. The results indicated that the ME A. wardii was more efficient in Cd accumulation in the root than NME after growing in Cd polluted soils for 50 days in a green house. Soil solution pH and dissolved organic carbon (DOC) concentration in the rhizosphere of ME A. wardii were higher than in the bulk soil and initial values (before planting), whereas the increment in the ME A. wardii were greater than NME. Owing to the increasing of rhizosphere soil pH, exchangeable Cd significantly decreased, whereas the other Cd species were increased with increasing soil DOC values. It is assumed that the ME A. wardii was effective in stabilizing Cd from the mobile fraction to non-mobile fractions. Results from this study suggest that rhizosphere alkalinization and the exudation of high amounts of dissolved organic matter (DOM) to reduce heavy metal mobility might be the two important mechanisms involved in the metal tolerance/accumulation of ME A. wardii.
Mostrar más [+] Menos [-]Advanced Treatment of Reverse Osmosis Concentrate by Integrated Activated Carbon and Iron-Activated Persulfate Oxidation
2014
Joo, Sung Hee
Treatment of reverse osmosis concentrate (ROC) has been complicated in terms of feasibility, cost, and most importantly, efficiency in removing contaminants. While adsorbents such as activated carbon, coal, and fly ash can remove organics, they may not be effective in removing nutrient salts that cause algae growth. Moreover, with regards to physical treatment, removing contaminants using adsorbents may not be appropriate, as toxic and non-biodegradable pollutants are not transformed or degraded into non-toxic forms. In this study, a series of processes involving adsorption using activated carbon and oxidation by hydroxyl and sulfate radicals were assessed as a means of treating ROC. The method includes treating water containing organics with an adsorbent, and adding nano-sized zero-valent iron (nZVI) to the water in the presence of oxygen, followed by the addition of persulfate, where the water is oxidized with reactive oxygen species (e.g., hydroxyl radical, peroxide, superoxide anion) produced by the addition of ZVI and persulfate radicals generated from persulfate activated by the addition of nZVI. Removal of non-biodegradable organics (as well as nitrogen and phosphorous) and nutrient salts not readily removed by conventional treatment methods can be effectively accomplished through the physical removal method described, using activated carbon, and by a chemical removal method using radical oxidation.
Mostrar más [+] Menos [-]Modeling of UV-Induced Photodegradation of Naphthalene in Marine Oily Wastewater by Artificial Neural Networks
2014
Jing, Liang | Chen, Bing | Zhang, Baiyu
In this study, an artificial neural networks (ANN) model was developed to predict the removal of a polycyclic aromatic hydrocarbon (PAH), namely, naphthalene from marine oily wastewater by using UV irradiation. The removal rate was used as model output and simulated as a function of five independent input variables, including fluence rate, salinity, temperature, initial concentration and reaction time. The configuration of the ANN model was optimized as a three-layer feed-forward Levenberg–Marquardt backpropagation network with log-sigmoid and linear transfer functions at the hidden (12 hidden neurons) and output layers, respectively. By considering goodness-of-fit and cross validated predictability, the ANN model was trained to provide good overall agreement with experimental results with a slope of 0.97 and a correlation of determination (R ²) of 0.943. Sensitivity analysis revealed that fluence rate and temperature were the most influential variables, followed by reaction time, salinity and initial concentration. The findings of this study showed that neural network modeling could effectively predict the behavior of the photo-induced PAH degradation process.
Mostrar más [+] Menos [-]Adsorption of Clofibric Acid from Aqueous Solution by Graphene Oxide and the Effect of Environmental Factors
2014
Zhang, Ya-Lei | Liu, Yan-Jing | Dai, Chao-Meng | Zhou, Xue-Fei | Liu, Shu-Guang
Graphene oxide (GO) nanosheets were used as adsorbent material for the removal of clofibric acid (CA) which was difficult to be removed from wastewater by traditional wastewater treatment technique. Adsorption kinetics, adsorption equilibrium, and effect of pH, ionic strength, and humic acid (HA) of the adsorption of CA onto the GO nanosheets in aqueous solution were investigated in detail. Adsorption isotherm studies indicated that the Langmuir isotherm equation fitted the sorption isotherm data better than Freundlich model and the maximum adsorption capacity of GO nanosheets for CA was 994 mg g⁻¹. In addition, adsorption kinetics data showed that the sorption of CA on GO nanosheets reached equilibration within a few minutes and were well fitted by pseudo second-order model. The results of the effects of environment factors indicated that CA sorption on GO nanosheets was weakly affected by ionic strength and strongly depended on pH and HA because of the structure of CA and the large number of oxygen-containing function groups presented on the surface of GO nanosheets. Besides, the removal efficiency of GO nanosheets for CA was reduced at pH >4 and enhanced at pH <4 in the presence of HA.
Mostrar más [+] Menos [-]Identifying Type of Refined Petroleum Products in Environmental Media: Thin-Layer Chromatography (TLC) as a Quick Methodology
2014
Ko, Myoung-Soo | Kwon, Dongwook | Yang, Jung-Seok | Kwon, Man Jae | Lee, Seung-Woo | Lee, Seunghak
The ultimate goal of our study is to establish thin-layer chromatography (TLC) as a quick and simple method for identifying the type of refined petroleum products present in the environmental media. As a preliminary step, TLC chromatograms of different petroleum products, including gasoline, kerosene, and diesel, were characterized and compared. Methanol was determined as the optimum carrier solution in TLC analysis. The spherical-shaped TLC chromatogram of gasoline showed the longest migration distance, and thus the highest retardation factor (Rf) of 0.91. This was followed by that of kerosene (0.63) with an elliptical-shaped, and diesel (0.24) with an elongated trapezoid-shaped chromatogram. Rfof kerosene and diesel increased with the dilution factor, while gasoline showed a constant value. Additionally, it was observed that the TLC chromatograms of oils produced the same peak pattern with the corresponding petroleum products in gas chromatography (GC). A mixed sample of kerosene and diesel presented a triangular shaped chromatogram, underlining the need to consider the shape of chromatogram in addition to the Rfvalue, as an indicator of the petroleum type. The findings indicate that TLC has a huge potential to be used as a quick and reliable method for identifying the type of refined petroleum products in the environmental media.
Mostrar más [+] Menos [-]Environmental Fate of Trifluralin, Procymidone, and Chlorpyrifos in Small Horticultural Production Units in Argentina
2014
Querejeta, Giselle A. | Ramos, Laura M. | Hughes, Enrique A. | Vullo, Diana | Zalts, Anita | Montserrat, Javier M.
Pesticide biodegradation was studied in soil samples of a representative small periurban production unit (Moreno District, Argentina). The mean periods required for the 50 % dissipation of chlorpyrifos (16 days ± 1 day), procymidone (3.7 days ± 0.6 day), and trifluralin (3.6 days ± 0.6 day) were significantly lower than those measured for reference soil samples of a close location, using doses similar to the manufacturer’s recommendation. A preliminary screening scheme for pesticide-degrading bacteria on horticultural soil allowed the isolation of nine culturable bacterial strains, eight of which belonged to Pseudomonas genus. In order to consider the influence of the variability of soil properties on the biodegradation results, humidity, organic matter, conductivity, pH, water retention volume, density, respiration, and total phosphorous content were studied for different soil samples, finding no significant differences in the performed analysis. Overall, although the horticultural activity alters the natural soil, pesticide contamination effects could be reversed by the autochthonous microbial community.
Mostrar más [+] Menos [-]