Refinar búsqueda
Resultados 1401-1410 de 6,548
Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa Texto completo
2020
Bellas, Juan | Gil, Irene
Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa Texto completo
2020
Bellas, Juan | Gil, Irene
Ingestion of microplastics by marine organisms has been well documented, but their interaction with chemical pollutants has not been sufficiently addressed. The aim of this study was to determine the individual and combined effects of chlorpyrifos (CPF) and polyethylene microplastics (MP) on the survival, fecundity, feeding and egg viability of Acartia tonsa, a calanoid copepod widely distributed in planktonic communities. The median lethal concentration obtained for CPF was higher (LC₅₀ = 1.34 μg/L) than for the combination with MP (LC₅₀ = 0.37 μg/L), or CPF-loaded MP (LC₅₀ = 0.26 μg/L). Significant effects were also observed for feeding and egg production (EC₅₀ = 0.77 and 1.07 μg/L for CPF, 0.03 and 0.05 μg/L for CPF combined with MP, 0.18 and 0.20 μg/L for CPF-loaded MP). No significant effects were observed in the exposure to ‘virgin’ MP. This study confirms the role of MP as vectors of pollutants to marine organisms and supports the increased availability of certain toxicants carried out by MP. The effects observed in fitness-related responses suggest potential damage to A. tonsa populations. The comparison of the results obtained here with environmental concentrations indicates that the combined exposure to CPF and MP could constitute a risk to A. tonsa in the natural environment.
Mostrar más [+] Menos [-]Polyethylene microplastics increase the toxicity of chlorpyrifos to Acartia tonsa copepods Texto completo
2020
Bellas, Juan | Gil, I.
Ingestion of microplastics by marine organisms has been well documented, but their interaction with chemical pollutants has not been sufficiently addressed. The aim of this study was to determine the individual and combined effects of chlorpyrifos (CPF) and polyethylene microplastics (MP) on the survival, fecundity, feeding and egg viability of Acartia tonsa, a calanoid copepod widely distributed in planktonic communities. The median lethal concentration obtained for CPF was higher (LC50 ¼ 1.34 mg/L) than for the combination with MP (LC50 ¼ 0.37 mg/L), or CPF-loaded MP (LC50 ¼ 0.26 mg/L). Significant effects were also observed for feeding and egg production (EC50 ¼ 0.77 and 1.07 mg/L for CPF, 0.03 and 0.05 mg/L for CPF combined with MP, 0.18 and 0.20 mg/L for CPF-loaded MP). No significant effects were observed in the exposure to ‘virgin’ MP. This study confirms the role of MP as vectors of pollutants to marine organisms and supports the increased availability of certain toxicants carried out by MP. The effects observed in fitness-related responses suggest potential damage to A. tonsa populations. The comparison of the results obtained here with environmental concentrations indicates that the combined exposure to CPF and MP could constitute a risk to A. tonsa in the natural environment | Sí
Mostrar más [+] Menos [-]Selenium mitigates cadmium-induced crosstalk between autophagy and endoplasmic reticulum stress via regulating calcium homeostasis in avian leghorn male hepatoma (LMH) cells Texto completo
2020
Zhang, Cong | Wang, Lili | Cao, Chang-Yu | Li, Nan | Talukder, Milton | Li, Jin-Long
Cadmium (Cd) is a toxic heavy metal and widespread in environment and food, which is adverse to human and animal health. Food intervention is a hot topic because it has no side effects. Selenium (Se) is an essential trace element, found in various fruits and vegetables. Many previous papers have described that Se showed ameliorative effects against Cd. However, the underlying mechanism of antagonistic effect of Se against Cd-induced cytotoxicity in avian leghorn male hepatoma (LMH) cells is unknown, the molecular mechanism of Se antagonistic effect on Cd-induced and calcium (Ca²⁺) homeostasis disorder and crosstalk of ER stress and autophagy remain to be explored. In order to confirm the antagonistic effect of Se on Cd-induced LMH cell toxicity, LMH cells were treated with CdCl₂ (2.5 μM) and Na₂SeO₃ (1.25 and 2.5 μM) for 24 h. In this study, Cd exposure induced cell death, disrupted intracellular Ca²⁺ homeostasis and Ca²⁺ homeostasis related regulatory factors, interfered with the cycle of cadherin (CNX)/calreticulin (CRT), and triggered ER stress and autophagy. Se intervention inhibited Cd-induced LDH release and crosstalk of ER stress and autophagy via regulating intracellular Ca²⁺ homeostasis. Moreover, Se mitigated Cd-induced Intracellular Ca²⁺ overload by Ca²⁺/calmodulin (CaM)/calmodulin kinase IV (CaMK-IV) signaling pathway. Herein, CNX/CRT cycle played a critical role for the protective effect of Se on Cd-induced hepatotoxicity. Based on these findings, we demonstrated that the application of Se is beneficial for prevention and alleviation of Cd toxicity.
Mostrar más [+] Menos [-]Efficiency and risks of selenite combined with different water conditions in reducing uptake of arsenic and cadmium in paddy rice Texto completo
2020
Lv, HaiQin | Chen, Wenxiang | Zhu, Yanming | Yang, JiGang | Mazhar, Sohaib H. | Zhao, PingPing | Wang, Lizhen | Li, Yuanping | Azam, Syed Muhammad | Ben Fekih, Ibtissem | Liu, Hong | Rensing, Christopher | Feng, RenWei
The co-contamination of arsenic (As) and cadmium (Cd) in soils is a common problem. Selenium (Se) can reduce the uptake of As and Cd in plants, and in practice, the alternate wetting and drying is a common culture mode in rice production. However, it is unknown whether Se can efficiently reduce As and Cd concentrations in crops suffering from a high-level contamination of As and Cd under different soil water conditions. In this study, we assessed the efficiency and risks of selenite [Se(IV)], in a pot experiment, to reduce the uptake of As and Cd in a rice plant (YangDao No 6) growing in a heavily contaminated soil by As and Cd (pH 7.28) under different soil water conditions. The results showed that Se(IV) failed to control the grain total As and Cd concentrations within their individual limited standard (0.2 mg kg⁻¹) despite that Se(IV) significantly reduced the grain total As and Cd concentrations. The soil drying treatment alone could reduce the accumulation of arsenite [As(III)] in the grains, but additional Se(IV) stimulated the accumulation of As(III) in the grains under soil drying conditions. In addition, the addition of Se(IV) enhanced the As and Cd concentrations in the shoots and/or roots of rice plants under certain conditions. The above results all suggested that the utilization of Se(IV) in a high contaminated soil by As and Cd cannot well control the total concentrations of As and Cd in plants. In this study, the available concentrations of As and Cd in the rhizosphere soil, the rhizosphere soil pH, the formation of root iron/manganese plaques and the concentrations of essential elements in the grains were monitored, and the related mechanisms on the changes of these parameters were also discussed. This study will give a guideline for the safe production of rice plants in a heavily co-contaminated soil by As and Cd.
Mostrar más [+] Menos [-]Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea Texto completo
2020
Koongolla, J Bimali | Lin, Lang | Pan, Yun-Feng | Yang, Chang-Ping | Sun, Dian-Rong | Liu, Shan | Xu, Xiang-Rong | Maharana, Dusmant | Huang, Jian-Sheng | Li, Heng-Xiang
Microplastics are widespread across the global oceans, yet the potential risks of the ubiquitous environmental contaminant to marine organisms has been less known. Accumulation of microplastics and associated contaminants in marine fish, may pose adverse impacts to human health via seafood consumption. This study evaluated microplastic contamination in 24 fish species collected from Beibu Gulf, one of the world’s largest fishing grounds in South China Sea. Microplastics were detected in 12 fish species at an abundance of 0.027–1.000 items individual⁻¹ and found in fish stomach, intestines and gills with the count percentage of 57.7%, 34.6% and 7.7%, respectively. Transparent fibers were observed as the predominant microplastics, which might be ingested accidently by fish or transferred through other animals at lower trophic levels. Majority of microplastics were identified as polyester (44%) and nylon (38%), whereas polypropylene (6%), polyethylene (6%), and acrylics (6%) were also found. Relatively, higher microplastic abundances were found in demersal fish compared to the pelagic species. Overall, the abundance of microplastics was documented as relatively low in the commercial fish collected from the open water of Beibu Gulf, South China Sea.
Mostrar más [+] Menos [-]Phosphorus is more effective than nitrogen in restoring plant communities of heavy metals polluted soils Texto completo
2020
Huang, Jingxin | Wang, Chenjiao | Qi, Lanlan | Zhang, Xiaole | Tang, Guangmei | Li, Lei | Guo, Jiahang | Jia, Yujing | Dou, Xiaolin | Lu, Meng
Heavy metal pollution is widespread, and has an increasing trend in some countries and regions. It can be easily accumulated in plants, leading to plant species loss and affecting plant community composition. Artificial restoration can conserve plant diversity in contaminated soils and accelerate the recovery of polluted ecosystems. The application of nitrogen (N) and phosphorus (P) is inexpensive and convenient, which can increase the resistance of plants to adversity and promote the growth of plants in heavy metal polluted soils. In order to examine the effect of N and P nutrition on the conservation of plant community, we conducted a comparison experiment in greenhouse using soil with low N and P concentration, and set five treatments: C (soil with no heavy metals and fertilizer addition), H (soil with heavy metals addition but with no fertilizer), HN (soil with heavy metals and N addition), HP treatment(soil with heavy metals and P addition), HNP treatment (soil with heavy metals, N and P addition). Our results showed that heavy metal pollution reduced plant species by 300%, and significantly decreased plant diversity (P < 0.05). N addition increased the richness of plant species and increased the dominance of Euphorbia peplus, but had no significant effect on plant diversity and community structure, while reduced the evenness of plant species. P addition of HP and HNP treatments restored plant species richness and increased plant diversity under heavy metal pollution. The plant community structures of these two treatments were more similar to that of group C. Compared with N addition, P addition had a better performance to restoring the species composition and relative dominance of plant communities. Our results provided a guidance for the restoration of plant communities and the conservation of plant species in low N and P concentration soils with the context of heavy metal pollution.
Mostrar más [+] Menos [-]n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats Texto completo
2020
Maske, Priyanka | Dighe, Vikas | Mote, Chandrashekhar | Vanage, Geeta
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats.A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
Mostrar más [+] Menos [-]Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia Texto completo
2020
Adam, Max Gerrit | Chiang, Andrew Wei Jie | Balasubramanian, Rajasekhar
Light absorbing carbonaceous aerosols (LACA) consisting of black carbon (BC) and brown carbon (BrC) have received considerable attention because of their climate and health implications, but their sources, characteristics and fates remain unclear in Southeast Asia (SEA). In this study, we investigated spatio-temporal characteristics of LACA, their radiative properties and potential sources in Singapore under different weather conditions. Hourly BC concentrations, measured from May 2017 to March 2018, ranged from 0.31 μg/m³ to 14.37 μg/m³ with the mean value being 2.44 ± 1.51 μg/m³. High mass concentrations of BC were observed during the south-west monsoon (SWM, 2.60 ± 1.56 μg/m³) while relatively low mass concentrations were recorded during the north-east monsoon (NEM, 1.68 ± 0.96 μg/m³). There was a shift in the Absorption Ångström exponent (AAE) from 1.1 to 1.4 when the origin of LACA changed from fossil fuel (FF) to biomass burning (BB) combustion. This shift is attributed to the presence of secondary BrC in LACA, derived from transboundary BB emissions during the SWM. Lower AAE values were observed when local traffic emissions were dominant during the NEM. This explanation is supported by measurements of water-soluble organic carbon (WSOC) in LACA and the corresponding AAE values determined at 365 nm using a UV–vis spectrophotometer. The AAE values, indicative of the presence of brown carbon (BrC), showed that photochemically aged LACA contribute to an enhancement in the light absorption of aerosols. In addition, spatio-temporal characteristics of BC in the intra-urban environment of Singapore were investigated across diverse outdoor and indoor microenvironments. High variability of BC was evident across these microenvironments. Several air pollution hotspots with elevated BC concentrations were identified. Overall, the results stress a need to control anthropogenic emissions of BC and BrC in order to mitigate near-term climate change impacts and provide health benefits.
Mostrar más [+] Menos [-]Health risk assessment of trace elements exposure through the soil-plant (maize)-human contamination pathway near a petrochemical industry complex, Northeast China Texto completo
2020
Cao, Lina | Lin, Chenlu | Gao, Yufu | Sun, Caiyun | Xu, Liang | Zheng, Liang | Zhang, Zhenxing
The trace elements contamination of agricultural soils near petrochemical industry complexes is a concern due to the risk of accumulating in food systems and subsequently affecting human health. We measured representative trace elements (Cu, Ni, Cr, Pb, Zn, Pb, Hg and As) through the soil-plant (maize)-human contamination pathway near a petrochemical industry complexes in an agricultural region from September 20 to 28, 2016. We found that the soil was mildly to moderately polluted by multiple trace elements, which was also confirmed by the contamination factor and enrichment factor values. Cd (enrichment factor = 2.28), Cu (2.75), Zn (1.85) and Pb (1.70) should be given more attention and prioritized over the other trace elements due to their higher potential risks. Furthermore, the trace elements contamination in maize grains was lower than the corresponding limits. The sequence of the transfer coefficient values was Zn > Cd > Cu > Hg > Ni > As > Cr > Pb. Maize grain safety was threatened mainly by Zn, Cd and Cu. There was no risk to humans through soil ingestion, while a potential health risk from maize grain consumption existed. Children were more sensitive than adults to the non-carcinogenic risks of maize grain consumption. Trace element As was found to be the priority metal for risk control. For carcinogenic risk, adults were more sensitive than children; As, Cr and Cd were the priority metals for risk control, with CRₘₐᵢzₑ values exceeding the risk threshold (1 × 10⁻⁴). Overall, strict, intensive monitoring, especially of Cr and Cd, and soil protection measures are needed to prevent any furthertrace elements contamination and to ensure food safety. This study also provides a reference for similar studies worldwide.
Mostrar más [+] Menos [-]Reduced phytotoxicity of nonylphenol on tomato (Solanum lycopersicum L.) plants by earthworm casts Texto completo
2020
Jiang, Lei | Wang, Bingjie | Liang, Jingqi | Pan, Bo | Yang, Yi | Lin, Yong
Concentrations as high as thousands of milligrams per kilogram (dry weight) of nonylphenol (NP), an endocrine-disrupting chemical of great concern, have been reported in soil. Soil is considered one of the primary pathways for exposure of crop plants to NP. However, there have been few studies on the toxicity of soil NP to crop plants, especially with comprehensive consideration of the application of organic fertiliser which is a common agricultural practice. In this study, tomato plants were grown in soils treated with NP in the presence and/or absence of earthworm casts (EWCs). After four weeks, we tested the physiological and biochemical responses (accumulative levels of hydrogen peroxide (H₂O₂) and superoxide anion radicals (O₂-·), total chlorophyll content, degree of membrane lipid peroxidation, activities of defence-related enzymes, and level of DNA damage) and the changes in plant growth (elongation and biomass). The growth inhibition, reactive oxygen species (H₂O₂ and O₂-·) accumulation, decrease in chlorophyll content, increase in activity of defence-related enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), enhancement of membrane lipid peroxidation, and DNA damage in NP-treated seedlings were clearly reversed by the intervention of EWCs. In particular, the suppressed elongation, biomass, and chlorophyll content in tomato plants exposed to NP alone were significantly restored by EWCs to even greater levels than those of the undisturbed control. In other words, EWCs could efficiently invigorate the photosynthesis of crops via up-regulating the chlorophyll content, thereby overwhelming the NP stress on plant growth. Accordingly, except for reducing the bioavailability of soil NP as reported in our previous study, EWCs could also help crop plants to cope with NP stress by strengthening their stress resistance ability. Our findings are of practical significance for the formulation of strategies to relieve the negative effects of soil NP on crop growth.
Mostrar más [+] Menos [-]Sub micron aerosol variability and its ageing process at a high altitude site in India: Impact of meteorological conditions Texto completo
2020
Mukherjee, Subrata | Singla, Vyoma | Meena, Guman Singh | Aslam, Mohammad Yusuf | Safai, Pramod Digambar | Buchunde, Pallavi | Vasudevan, Anil Kumar | Jena, Chinmay Kumar | Ghude, Sachin Dinkar | Dani, Kundan | Pandithurai, Govindan
The effect of relative humidity and temperature on the submicron aerosol variability and its ageing process was studied over a high altitude site, Mahabaleshwar in south-west India. The mass composition of non-refractory particulate matter of 1 μm (NR-PM₁) size was obtained using Time of Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) along with the measurements on a few trace gases during winter (December 2017–February 2018) and summer season (20th March - 5th May 2018). Sulfate exhibited strong dependence on the relative humidity (RH) as its mass fraction increased with the increase in RH. The Sulfate oxidation ratio (SOR) calculated during summer season also showed an increasing trend with RH indicating the influence of aqueous phase oxidation on sulfate fraction. On the other hand, OOA showed remarkable enhancement in its mass fraction with the increase in temperature along with the corresponding increase in f₄₄ and tropospheric ozone. OOA, ozone and f₄₄ ratio increased 14–34%, 8–26% and 25–43% respectively with the increase in temperature from 18 to 30 °C. This is indicative of the dominance of photochemical ageing processes during high temperature conditions. The extent of photochemical ageing was found to be higher during summer season (mean temperature ∼25.4 ± 2.6 °C) as compared to winter season (mean temperature ∼20.5 ± 2.6 °C). The nitrate diurnal was majorly governed by gas to particle partitioning process during winter season, whereas the summertime nitrate diurnal was influenced primarily by its formation rate. The non parametric wind regression analysis revealed that the mass concentration during winter was majorly contributed by distant sources from north east direction while during summer the local sources were more dominant.
Mostrar más [+] Menos [-]