Refinar búsqueda
Resultados 1411-1420 de 6,560
Accumulation characteristics and biological response of ginger to sulfamethoxazole and ofloxacin Texto completo
2020
Lv, Yao | Xu, Jiamin | Xu, Kun | Liu, Xiaohui | Guo, Xiaochun | Lu, Shaoyong | Xi, Beidou
The potential risk to human health of antibiotics that pass through the food chain has become an important global issue, but there are few reports on the response of ginger (Zingiber officinale) to antibiotic pollution. In this study, we investigated the enrichment characteristics and biological response of ginger to sulfamethoxazole (SMZ) and ofloxacin (OFL) residues, which are common in the environment. Lower levels of SMZ, OFL and their combined duplex treatment (SMZ+OFL) promoted the growth of ginger, but the critical doses necessary to stimulate growth differed among treatments: 10 mg L⁻¹ SMZ, 1 mg L⁻¹ OFL and 1 mg L⁻¹ (SMZ+OFL) had the strongest stimulating effects. At higher dosages, the root growth and light energy utilization efficiency of ginger were impaired, and (SMZ+OFL) had the strongest inhibitory effect. Treatments with lower levels of antibiotics had no significant effect on reactive oxygen species and antioxidant enzyme activities. However, when SMZ, OFL and SMZ+OFL concentrations exceeded 10 mg L⁻¹, the contents of H₂O₂, O₂⁻ and MDA continued to increase, while the activities of SOD, POD, CAT first increased and then decreased, especially in SMZ+OFL. Ginger accumulated more SMZ and OFL in rhizomes and less in leaves, and accumulation increased significantly as antibiotic concentration increased. When SMZ concentration was 1 mg L⁻¹, the SMZ concentrations in rhizomes, roots, and leaves were 0.23, 0.15, and 0.05 mg kg⁻¹, respectively, and the residual SMZ in the rhizome was 2.3 times higher than the maximum residue limit. The abundance of the resistance genes sul1, sul2, qnrS, and intI1 increased with increasing antibiotic concentrations, and intI1 abundance was the highest. OFL induced higher levels of intI1 expression than did SMZ.
Mostrar más [+] Menos [-]Investigating the distribution and regional occurrence of anthropogenic litter in English marine protected areas using 25 years of citizen-science beach clean data Texto completo
2020
Nelms, Sarah E. | Eyles, Lauren | Godley, Brendan J. | Richardson, Peter B. | Selley, Hazel | Solandt, Jean-Luc | Witt, Matthew J.
Marine Protected Areas (MPAs) are designated to enable the management of damaging activities within a discrete spatial area, and can be effective at reducing the associated impacts, including habitat loss and over-exploitation. Such sites, however, may be exposed to the potential impacts from broader scale pressures, such as anthropogenic litter, due to its diffuse nature and lack of constraint by legislative and/or political boundaries. Plastic, a large component of litter, is of particular concern, due to increasing evidence of its potential to cause ecological and socio-economic damage. The presence of sensitive marine features may mean that some MPAs are at greater potential risk from the impacts of plastic pollution than some non-protected sites. Understanding the abundance, distribution and composition of litter along coastlines is important for designing and implementing effective management strategies. Gathering such data, however, can be expensive and time-consuming but litter survey programmes that enlist citizen scientists are often able to resolve many of the logistical or financial constraints. Here, we examine data collected over 25-years (1994–2018), by Marine Conservation Society volunteers, for spatial patterns in relation to the English MPA network, with the aim of highlighting key sources of litter and identifying management priority areas. We found that MPAs in southeast (Kent) and southwest (Cornwall and Devon) England have the highest densities of shore-based litter. Plastic is the main material constituent and public littering the most common identifiable source. Items attributed to fishing activities were most prevalent in southwest MPAs and sewage related debris was highest in MPAs near large rivers and estuaries, indicating localised accumulation. When comparing inside and outside of MPAs, we found no difference in litter density, demonstrating the need for wider policy intervention at local, national and international scales to reduce the amount of litter.
Mostrar más [+] Menos [-]The characterization of fine particulate matter downwind of Houston: Using integrated factor analysis to identify anthropogenic and natural sources Texto completo
2020
Sadeghi, Bavand | Choi, Yunsoo | Yoon, Subin | Flynn, James | Kotsakis, Alexander | Lee, Sojin
The interpretation of large air pollution datasets involves a great deal of complexity. To gain a better understanding of the complicated relationships and patterns within datasets, we perform factor analysis. Between December 2015 and December 2017, fine particulate matter (PM₂.₅) samples were collected at a suburban site northeast of the Houston metropolitan area, TX. A total of 233 filter samples were analyzed for chemical composition. The average of all PM₂.₅ samples consisted of 38.1% inorganic ions, 28.9% elements, 29.1% organic carbon, and 3.7% elemental carbon and other organic materials. Principal component analysis and positive matrix factorization were utilized to identify eight factors: regional aerosols, biomass burning, gasoline combustion, industry, crustal material, incineration, marine dust, and fireworks. The first three contributed more than 70% of the total PM₂.₅ mass. The receptor models also captured the impact of fireworks and classified it as a source of PM₂.₅ over Houston. To identify the origins of air masses transporting PM₂.₅ to the site, we applied the NOAA hybrid single-particle Lagrangian integrated trajectory model and performed a cluster analysis of back trajectories and determined six cluster source regions: the Gulf of Mexico, the Southeast, two midwestern clusters, the Pacific Northwest, and the Southwest. The results of our analysis show that during the summer months, marine and crustal sources were often associated with an onshore flow from the Gulf of Mexico and that four clusters covering 38% of the West Liberty area were strongly influenced by trajectories originating from biomass burning. The results of this study represented a variety of sources that affect the PM₂.₅ over the Houston metropolitan area. The quantified contributions of these sources could provide policymakers with useful information for developing more efficient control systems and making more effective decisions to cope with the harmful effects of ambient air pollution.
Mostrar más [+] Menos [-]Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment Texto completo
2020
Liu, Lingling | Liu, Jiyuan | Ma, Jin | Wu, Haiwen | Qu, Yajing | Gong, Yiwei | Yang, Shuhui | An, Yanfei | Zhou, Yongzhang
Urban parks play an important role in the urban ecosystem and are also used by residents for recreation. The environmental quality of urban park soils might influence human health following long-term exposure. To assess potential sources and pollution risks of heavy metal(loid)s in the topsoil of urban parks, we subjected metal concentrations in soil samples from 121 parks in the Beijing urban area to geostatistical analyses, conditional inference tree (CIT) analyses, ecological risk and human health risk assessment. CIT effectively explained the influence of human activity on the spatial variation and accumulation of soil metal(loid)s and identified the contributions of natural and anthropogenic inputs. The main factors influencing the accumulation of heavy metal(loid)s, including urbanization duration, park age, per capita GDP, industrial output, and coal consumption, were evaluated by CIT. Except for Cr and Ni, the average concentrations of the metal(loid)s tested (Cu, Pb, Zn, Hg, As, and Cd) were higher than the background values. In the urban parks, Ni and Cr derived mostly from soil parent materials. Concentrations of Cu, Zn, Pb, Cd, As, and Hg were strongly associated with human influences, including industrial, agricultural, and traffic activity. After assessing health and ecological risks, we conclude that heavy metal(loid)s in the soil of Beijing urban parks pose no obvious health risk to humans, and the ecological risk is also low.
Mostrar más [+] Menos [-]Use of integrated biomarker response for studying the resistance strategy of the earthworm Metaphire californica in Cd-contaminated field soils in Hunan Province, South China Texto completo
2020
Wang, Kun | Qiao, Yuhui | Li, Huafen | Huang, Caide
Research was conducted to study the response and detoxification mechanisms of earthworms collected from Cd-contaminated areas in Hunan Province, South China. Metaphire californica, the dominant earthworm species in fields, referred as earthworm-A and -B that collected from low- (0.81 mg kg⁻¹) and high-Cd soil (13.3 mg kg⁻¹), respectively, for exchanging incubation in laboratory. The results showed that earthworm-A gradually accumulated higher Cd when exposed in the high-Cd soil, whereas Cd concentration of earthworm-B decreased after being transferred to low-Cd soil (albeit BAFCd >20). The integrated biomarker response index was calculated with the biomarkers of antioxidant systems (e.g., superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH), glutathione peroxidase (GPx), glutathione-S transferase (GST), and malondialdehyde (MDA)) and energy index (e.g., protein and glycogen) in M. californica. GSH, GPx, and GST contributed the most to the integrated biomarker response (IBR) in earthworm-A when exposed in high-Cd soil for 14 d. Earthworm-B responded with higher GST and GPx activities and decreased protein content in low-Cd soil. For 28 d, the response of earthworm-A was not evident in either low- or high-Cd soil, and the inductive effect of metal stress on earthworm-B tended to be stable, except for the higher MDA content (p < 0.05) when exposed in low-Cd soil. The IBR index of earthworm-B (2.93 and 3.40) in low- and high-Cd soil, respectively, was higher than that of earthworm-A (0.89 and 1.0). Overall, earthworm-A exhibited a detoxification process to resist high-Cd toxicity from low-to high-Cd soil. Earthworm-B exhibited a physiological resilience once its habitat had changed to a normal or low-Cd soil environment, possibly owing to the cost of its resistance adaptation to the historical highly contaminated soil in fields.
Mostrar más [+] Menos [-]Comparative study of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in corals, sediments and seawater from coral reefs of Hainan, China Texto completo
2020
Yang, Tinghan | Diao, Xiaoping | Cheng, Huamin | Wang, Haihua | Zhou, Hailong | Zhao, Hongwei | Chen, Chien Min
This work investigated levels of PAHs and HMs in fourteen species from seven genera of scleractinian corals, adjacent sediments, and surface seawater in Hainan, China. The sources of contaminations were analyzed as well. The results showed that scleractinian corals had a relatively higher bioaccumulation capacity for PAHs from sediments than for HMs. There were inter-species differences for these contaminants enriched in corals. Pavona varians and Porites lutea could accumulate PAHs more readily. While higher concentrations of Cr, Mn and Pb occurred in Favites flexuosa, other metal levels, such as for Ni, Cu, Zn and As, were found to be elevated in Pocillopora damicornis, as well as for Cd in Acropora echinata. It was found that PAHs originated from petrogenic and pyrolytic sources, and were mainly linked to onshore and on-sea activities, such as motorboats. Mn, Ni, As and Cd were from crustal materials or natural weathering, while Cr, Cu, Zn and Pb were non-crustal origin connecting with the use of anti-fouling boat paint and agricultural and/or aquacultural chemicals. This study suggested that corals could serve as good bioindicators for two types of chemical pollution in the reef system, especially for the two species P. varians and P. lutea for PAHs contaminants.
Mostrar más [+] Menos [-]Neonicotinoid insecticides in the drinking water system – Fate, transportation, and their contributions to the overall dietary risks Texto completo
2020
Lu, Chensheng | Lu, Zhengbiao | Lin, Shu | Dai, Wei | Zhang, Quan
Neonicotinoids (Neonics) have become the most widely used insecticides around the world in recent years. Due to the hydrophilic character, neonics are emerging contaminants in drinking water. In this study, we aimed to characterize and quantify the fate and transport of neonics in the drinking water treatment system and their contributions to the overall dietary risks. Seven neonics in 97 surface and drinking water samples in the city of Hangzhou, China were analyzed. The relative potency factor method was adopted in order to calculate the total neonics concentrations. We then used the Monte Carlo simulation to calculate the chronic daily intake (CDI) of total neonics from water consumption. All 16 surface water samples collected from two rivers contained at least two neonics, and more than 93% of those contained 3 or more neonics. Imidacloprid was detected in all 16 surface water samples, followed by clothianidin and acetamiprid with average concentrations of 11.9, 7.6, 17.6 ng L-1, respectively. The drinking water treatment plants removed approximately 50% of neonics from surface water. However, 68 out of 71 tap water samples that we collected from the household faucets contained at least one neonic, with the highest average concentrations of 5.8 ng L-1 for acetamiprid. The maximum of CDIs of total neonics from water consumption for adult and children were 10.2 and 12.4 ng kg-1 d-1, respectively, which are significantly lower than the acceptable daily intake (ADI). The results presented here shown drinking water consumption only represented an insignificant portion of dietary risks of total neonics, mainly due to the modern drinking water treatment technologies that are capable of removing significant amount of neonics from drinking water. However, the ubiquity of neonics in the drinking water sources to kitchen faucets, should be a concern for public health.
Mostrar más [+] Menos [-]Formation of perfluorocarboxylic acids from 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate: Role of microbial communities Texto completo
2020
Hamid, Hanna | Li, Loretta Y. | Grace, John R.
Fluorotelomer compounds in landfill leachate can undergo biotransformation under aerobic conditions and act as a secondary source of perfluorocarboxylic acids (PFCAs) to the environment. Very little is known about the role of various microbial communities towards fluorotelomer compounds biotransformation. Using an inoculum prepared from the sediment of a leachate collection ditch, 6:2 fluorotelomer sulfonate (6:2 FTS) biotransformation experiments were carried out. Specific substrates (i.e., glucose, ammonia) and ammonia-oxidizing inhibitor (allylthiourea) were used to produce two experimental runs with heterotrophic (HET) growth only and heterotrophic with ammonia-oxidizing and nitrite- oxidizing bacteria (HET + AOB + NOB). After 10 days, ∼20% of the spiked 6:2 FTS removal was observed in HET + AOB + NOB, compared to ∼7% under HET condition. Higher 6:2 FTS removal in HET + AOB + NOB likely resulted from ammonia monooxygenase enzyme that catalyzes the first step of ammonia oxidation. The HET + AOB + NOB condition also showed higher PFCA (C4–C6) formation (∼2% of initially spiked 6:2 FTS), possibly due to higher overall bioactivity. Microbial community analysis through 16s rRNA sequencing confirmed that Proteobacteria and Bacteroidetes were the most abundant phyla (>75% relative abundance) under all experimental conditions. High abundance of Actinobacteria (>17%) was observed under the HET + AOB + NOB condition on day 7. Since Actinobacteria can synthesize a wide range of enzymes including monooxygenases, they likely play an important role in 6:2 FTS biotransformation and PFCA production.
Mostrar más [+] Menos [-]Uptake, translocation and toxicity of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium co-contamination in water spinach (Ipomoea aquatica Forsk) Texto completo
2020
Tang, Tianhao | Liu, Xiaochun | Wang, Longqian | Zuh, Achuo Anitta | Qiao, Weichuan | Huang, Jun
Bioaccumulation and toxicity of per-and polyfluoroalkyl substances and metal in plants have been confirmed, however their contamination in soil and plants still requires extensive investigation. In this study the combined effects of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium (Cr) on water spinach (Ipomoea aquatica Forsk) were investigated. Compared with each single stress, the combination of F53B and Cr (VI) reduced the biomass and height and increasingly accumulated in the roots and destroyed the cell structure. Besides, the co-contamination led to the immobilization of F53B and Cr (VI) in soil, which affected their migration in soil and transfer to plants. The antioxidant response and photosynthesis of the plant weakened under the single Cr (VI) and enhanced under the single F53B treatment; however the contamination of F53B and Cr (VI) could also reduce this effect, as confirmed by the gene expression of MTa, psbA and psbcL genes. This study provides an evidence of the environmental risks resulting from the coexistence of F53B and Cr (VI).
Mostrar más [+] Menos [-]Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils Texto completo
2020
Li, Jinyang | Chen, Qinglin | Li, Helian | Li, Shiwei | Liu, Yinghao | Yang, Liyuan | Han, Xuemei
The human pathogenic bacteria (HPB) in animal feces may disseminate to agricultural soils with their land application as organic fertilizer. However, the knowledge about the impacts of different sources and rates of animal manures on the temporal changes of soil HPB remains limited, which hamper our ability to estimate the potential risks of their land application. Here, we constructed an HPB database including 565 bacterial strains. By blasting the 16 S rRNA gene sequences against the database we explored the occurrence and fate of HPB in soil microcosms treated with two rates of swine, poultry or cattle manures. A total of 30 HPB were detected in all of manure and soil samples. Poultry manure at the high level obviously improved the abundance of soil HPB. The application of swine manure could introduce concomitant HPB into the soils. Of which, Pseudomonas syringae pv. syringae B728a and Escherichia coli APEC O78 may deserve more attention because of their survival for a few days in manured soils and being possible hosts of diverse antibiotic resistance genes (ARGs) as revealed by co-occurrence pattern. Bayesian source tracking analysis showed that the HPB derived from swine manure had a higher contribution to soil pathogenic communities than those from poultry or cattle manures in early days of incubation. Mantel test together with variation partitioning analysis suggested that bacterial community and soil physicochemical properties were the dominant factors determining the profile of HPB and contributed 64.7% of the total variations. Overall, our results provided experimental evidence that application of animal manures could facilitate the potential dissemination of HPB in soil environment, which should arouse sufficient attention in agriculture practice and management to avoid the threat to human health.
Mostrar más [+] Menos [-]