Refinar búsqueda
Resultados 1421-1430 de 7,979
Influence of photolysis on source characterization and health risk of polycyclic aromatic hydrocarbons (PAHs), and carbonyl-, nitro-, hydroxy- PAHs in urban road dust
2021
Gbeddy, Gustav | Egodawatta, Prasanna | Goonetilleke, Ashantha | Akortia, Eric | Glover, Eric T.
In this study, PAHs and their transformed PAH products (TPPs) in road dust were subjected to UV driven photolysis, and then extracted using simultaneous pressurized fluid extraction, and analysed using Shimadzu Triple Quadrupole GC/MS. The results of the analysis were used to investigate the robustness and reliability of 14 existing diagnostic ratios (DRs) and two newly proposed molecular DRs that are relevant for characterizing the sources of PAHs and TPPs. The influence of photolysis on the carcinogenic health risk posed to humans by these hazardous pollutants was then assessed. The findings indicated that the DRs segregated into stable, moderately stable and non-stable classes of source characteristics under the influence of photolysis. Only two of the existing DRs, namely, benzo(a)pyrene/benzo(ghi)perylene (BaP/BghiP) and total index exhibited consistent stability to photolysis, whilst fluoranthene/(fluoranthene + pyrene) (FRT/(FRT+PYR)) showed moderate stability. The two newly proposed DRs, naphthalene/1-nitronaphthalene (NAP/NNAP) and pyrene/(1-nitropyrene + 1-hydroxypyrene) (PYR/(1NPY+HPY)) were found to be highly reliable in post-emission source characterization. The cross-plots of the most stable DRs showed that traffic emissions is the primary source of PAHs, whilst post-emission photolysis is the secondary source of nitro-PAH (NPAH) TPPs. The percent resonance energy thermodynamic stability of the PAH pollutants does not exert any direct influence on the source characteristics of the DRs. Adults are more vulnerable to potential carcinogenic risks as a result of PAH and TPPs photolysis whereas negligible risk exist for children. This study contributes to a more reliable diagnosis of PAH and TPP sources and thus, to the regulatory mitigation of these hazardous pollutants thereby, promoting enhanced protection of human health and the environment.
Mostrar más [+] Menos [-]Identification of organosiloxanes in ambient fine particulate matters using an untargeted strategy via gas chromatography and time-of-flight mass spectrometry
2021
Cheng, Zhen | Qiu, Xinghua | Shi, Xiaodi | Zhu, Tong
Organosilicons are widely used in consumer products and are ubiquitous in living environments. However, there is little systemic information on this group of pollutants in ambient particles. This study proposes a novel untargeted strategy based mainly on the mass difference of three silicon isotopes to screen organosilicon compounds from 2-year PM₂.₅ samples of Beijing using gas chromatography and high-resolution time-of-flight mass spectrometry. 61 organosilicons were filtered from 1019 peaks, and 35 ones were identified as organosiloxanes including 17 methylsiloxanes and 18 phenylmethylsiloxanes, of which 6 and 3 species were confirmed using reference standards, respectively. These organosiloxanes could be clustered into three groups: low-silicon-number methylsiloxanes, high-silicon-number methylsiloxanes, and phenylmethylsiloxanes. Low-silicon-number methylsiloxanes showed high abundance in the heating season but low abundance in the non-heating season, whereas high-silicon-number methylsiloxanes showed the opposite seasonal variation. This study provides a promising strategy for screening organosilicon compounds through an untargeted approach and gives insights for further investigation of the sources and health risks of organosiloxanes.
Mostrar más [+] Menos [-]Sulfadiazine dissipation as a function of soil bacterial diversity
2021
de Souza, Adijailton Jose | Pereira, Arthur Prudêncio de Araújo | Andreote, Fernando Dini | Tornisielo, Valdemar Luiz | Tizioto, Polyana Cristiane | Coutinho, Luiz Lehmann | Regitano, Jussara Borges
Antibiotic residues in the environment are concerning since results in dispersion of resistance genes. Their degradation is often closely related to microbial metabolism. However, the impacts of soil bacterial community on sulfadiazine (SDZ) dissipation remains unclear, mainly in tropical soils. Our main goals were to evaluate effects of long-term swine manure application on soil bacterial structure as well as effects of soil microbial diversity depletion on SDZ dissipation, using “extinction dilution approach” and ¹⁴C-SDZ. Manure application affected several soil attributes, such as pH, organic carbon (OC), and macronutrient contents as well as bacterial community structure and diversity. Even minor bacterial diversity depletion impacted SDZ mineralization and non-extractible residue (NER) formation rates, but NER recovered along 42 d likely due to soil diversity recovery. However, this period may be enough to spread resistance genes into the environment. Surprisingly, the non-manured natural soil (NS–S1) showed faster SDZ dissipation rate (DT₉₀ = 2.0 versus 21 d) and had a great number of bacterial families involved in major SDZ dissipation pathways (mineralization and mainly NER), such as Isosphaeraceae, Ktedonobacteraceae, Acidobacteriaceae_(Subgroup_1), Micromonosporaceae, and Sphingobacteriaceae. This result is unique and contrasts our hypothesis that long-term manured soils would present adaptive advantages and, consequently, have higher SDZ dissipation rates. The literature suggests instantaneous chemical degradation of SDZ in acidic soils responsible to the fast formation of NER. Our results show that if chemical degradation happens, it is soon followed by microbial metabolism (biodegradation) performed by a pool of bacteria and the newly formed metabolites should favors NER formation since SDZ presented low sorption. It also showed that SDZ mineralization is a low redundancy function.
Mostrar más [+] Menos [-]Impact of wildfires on SO2 detoxification mechanisms in leaves of oak and beech trees
2021
Weber, Jan-Niklas | Kaufholdt, David | Minner-Meinen, Rieke | Bloem, Elke | Shahid, Afsheen | Rennenberg, H. (Heinz) | Hänsch, Robert
Frequency and intensity of wildfire occurrences are dramatically increasing worldwide due to global climate change, having a devastating effect on the entire ecosystem including plants. Moreover, distribution of fire-smoke can influence the natural environment over very long distances, i.e. hundreds of kilometres. Dry plant matter contains 0.1–0.9% (w/w) sulphur, which is mainly released during combustion into the atmosphere as sulphur dioxide (SO₂) resulting in local concentrations of up to 3000 nL L⁻¹. SO₂ is a highly hazardous gas, which enters plants mostly via the stomata. Toxic sulphite is formed inside the leaves due to conversion of SO₂. Plants as sessile organisms cannot escape from threats, why they evolved an impressive diversity of molecular defence mechanisms. In the present study, two recent wildfires in Germany were evaluated to analyse the effect of SO₂ released into the atmosphere on deciduous trees: the Meppen peat fire in 2018 and the forest fire close to Luebtheen in 2019. Collected leaf material from beech (Fagus sylvatica) and oak (Quercus robur) was examined with respect to detoxification of sulphur surplus due to the exposure to elevated SO₂. An induced stress reaction in both species was indicated by a 1.5-fold increase in oxidized glutathione. In beech leaves, the enzymatic activities of the sulphite detoxification enzymes sulphite oxidase and apoplastic peroxidases were increased 5-fold and a trend of sulphate accumulation was observed. In contrast, oaks did not regulate these enzymes during smoke exposure, however, the constitutive activity is 10-fold and 3-fold higher than in beech. These results show for the first time sulphite detoxification strategies of trees in situ after natural smoke exposure. Beech and oak trees survived short-term SO₂ fumigation due to exclusion of toxic gases and different oxidative detoxification strategies. Beeches use efficient upregulation of oxidative sulphite detoxification enzymes, while oaks hold a constitutively high enzyme-pool available.
Mostrar más [+] Menos [-]Elevated temperature and toxic Microcystis reduce Daphnia fitness and modulate gut microbiota
2021
Akbar, Siddiq | Huang, Jing | Zhou, Qiming | Gu, Lei | Sun, Yunfei | Zhang, Lu | Lyu, Kai | Yang, Zhou
The gut microbiota has been increasingly recognized to regulate host fitness, which in turn is dependent on stability of community structure and composition. Many biotic and abiotic factors have been demonstrated to shape gut microbiota of cladocerans. However, the interactive effects of these variables on cladocerans fitness due to alteration of gut microbiota and their linkage with life history parameters are poorly understood. Here, we investigated the responses of Daphnia magna gut microbiota to the combined effects of toxic Microcystis aeruginosa and high temperature and its associations with fitness. We found that under good food regime, the temperature has no effect on the composition of the gut microbiota, whereas under high proportion of toxic M. aeruginosa and high temperature conditions, D. magna lost their symbionts. High proportion of toxic M. aeruginosa and high temperature had synergistically negative effects on D. magna performance due to altered gut microbiota. The high abundance of symbiotic Comamonadaceae and good food increased D. magna fitness. The present study illustrates that understanding life history strategies in response to multiple stressors related to changes in the gut microbiota diversity and composition requires integrated approaches that incorporate multiple linked traits and tether them to one another.
Mostrar más [+] Menos [-]Historical deposition of PAHs in mud depocenters from the Southwestern Atlantic continental shelf: The influence of socio-economic development and coal consumption in the last century
2021
Timoszczuk, Cristian Taboada | dos Santos, Felipe Rodrigues | Araújo, Lígia Dias | Taniguchi, Satie | Lourenço, Rafael André | Mahiques, Michel Michaelovitch de | de Lima Ferreira, Paulo Alves | Lopes Figueira, Rubens Cesar | Neves, Patricia Andrade | Prates, Denise | Bícego, Márcia Caruso
Polycyclic aromatic hydrocarbon (PAH) concentrations were determined in four dated sediment cores collected in mud depocenters of the southern Brazilian continental shelf. Core dating results covered the interval between 1925 and 2017. The total PAH concentrations (ΣPAHs) ranged from 44.69 ng g⁻¹ to 305.43 ng g⁻¹ and were similar between the analysed cores. Fine-grained sediments and total organic carbon (TOC) results did not correlate with the ΣPAHs, indicating that the variations in PAH concentrations are mostly related to variations in sources and emissions. PAH source appointment indicated a high input of a natural compound (perylene) and the predominance of anthropogenic PAHs from coal, biomass, and fuel combustion. Alkylated PAHs presented high contributions throughout all cores. The historical deposition of PAHs was associated with different periods of the socio-economic and industrial development of near coastal cities and reflected very well the history of coal production and consumption in the southern region of Brazil. The low levels of ΣPAHs before 1945 in all analysed cores may be related to the beginning of the industrialization process and the lower urbanization degree in the region. Between 1945 and 1965, the gradual ΣPAHs increase reflects the establishment and enlargement of the southern Brazilian industrial sector. The interval between 1965 and 1990 corresponded to the highest ΣPAHs in three of the four analysed cores. After 1990, a relative decrease in the ΣPAHs was observed in most cores and may be related the multiple cuts of incentives to the industrial usage of coal, as well as to Brazil's efforts in environmental regulation for coal extraction and consumption.
Mostrar más [+] Menos [-]Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: Insights from mercury stable isotopes
2021
Besnard, Lucien | Le Croizier, Gaël | Galván-Magaña, Felipe | Point, David | Kraffe, Edouard | Ketchum, James | Martinez Rincon, Raul Octavio | Schaal, Gauthier
The decline of shark populations in the world ocean is affecting ecosystem structure and function in an unpredictable way and new ecological information is today needed to better understand the role of sharks in their habitats. In particular, the characterization of foraging patterns is crucial to understand and foresee the evolution of dynamics between sharks and their prey. Many shark species use the mesopelagic area as a major foraging ground but the degree to which different pelagic sharks rely on this habitat remains overlooked. In order to depict the vertical dimension of their trophic ecology, we used mercury stable isotopes in the muscle of three pelagic shark species (the blue shark Prionace glauca, the shortfin mako shark Isurus oxyrinchus and the smooth hammerhead shark Sphyrna zygaena) from the northeastern Pacific region. The Δ¹⁹⁹Hg values, ranging from 1.40 to 2.13‰ in sharks, suggested a diet mostly based on mesopelagic prey in oceanic habitats. We additionally used carbon and nitrogen stable isotopes (δ¹³C, δ¹⁵N) alone or in combination with Δ¹⁹⁹Hg values, to assess resource partitioning between the three shark species. Adding Δ¹⁹⁹Hg resulted in a decrease in trophic overlap estimates compared to those based on δ¹³C/δ¹⁵N alone, demonstrating that multi-isotope modeling is needed for accurate trophic description of the three species. Mainly, it reveals that they forage at different average depths and that resource partitioning is mostly expressed through the vertical dimension within pelagic shark assemblages. Concomitantly, muscle total mercury concentration (THg) differed between species and increased with feeding depth. Overall, this study highlights the key role of the mesopelagic zone for shark species foraging among important depth gradients and reports new ecological information on trophic competition using mercury isotopes. It also suggests that foraging depth may play a pivotal role in the differences between muscle THg from co-occurring high trophic level shark species.
Mostrar más [+] Menos [-]Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species
2021
Xu, Sheng | Wang, Yijing | Zhang, Weiwei | Li, Bo | Du, Zhong | He, Xingyuan | Chen, Wei | Zhang, Yue | Li, Yan | Li, Maihe | Schaub, Marcus
Atmospheric warming and increasing tropospheric ozone (O₃) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O₃ (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba ‘Berolinensis’ seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O₃ concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba ‘Berolinensis’ to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
Mostrar más [+] Menos [-]Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells
2021
Ding, Yunfei | Zhang, Ruiqing | Li, Boqing | Du, Yunqiu | Li, Jing | Tong, Xiaohan | Wu, Yulong | Ji, Xiaofei | Zhang, Ying
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
Mostrar más [+] Menos [-]Cryptic night-time trace metal and metalloid contamination in an intensively cultivated coastal catchment
2021
Conrad, Stephen R. | Santos, Isaac R. | White, Shane A. | Woodrow, Rebecca L. | Sanders, Christian J.
Detailed, high resolution time-series observations were performed to investigate sources, diel cycling, natural attenuation, and loadings of dissolved trace metals/metalloids in a subtropical headwater stream draining intensive horticulture in Australia. A transect of ∼3 km away from the source (farms) showed >75% reduction in concentration and loads of most trace elements. Mercury and arsenic had elevated loads downstream relative to other elements. Hourly time-series sampling revealed elevated creek discharge at night, accompanied by elevated nickel, selenium, copper, and mercury loads. Inputs from groundwater or treated sewage used for irrigation within the catchment are likely sources. Groundwater bore and treated sewage samples were highly contaminated with either zinc, copper, or mercury. Comparisons of daily and hourly samples indicated common sampling strategies can underestimate horticultural contaminant loadings. Load estimates for mercury and copper derived from hourly samples were 1.6- to 7- fold greater than loads from daily sample data collected over 79 days with varying rainfall. These high contaminant concentrations and loads are of concern to food products receiving irrigation and protected waterbodies downstream.
Mostrar más [+] Menos [-]