Refinar búsqueda
Resultados 1451-1460 de 7,921
Investigating the effects of municipal and hospital wastewaters on horizontal gene transfer
2021
Hutinel, Marion | Fick, Jerker | Larsson, D.G Joakim | Flach, Carl-Fredrik
Horizontal gene transfer (HGT) plays an important role in the dissemination of antibiotic resistance genes. In sewer systems, human-associated and environmental bacteria are mixed together and exposed to many substances known to increase HGT, including various antibacterial compounds. In wastewaters, those substances are most often detected below concentrations known to induce HGT individually. Still, it is possible that such wastewaters induce HGT, for example via mixture effects. Here, a panel of antibiotics, biocides and other pharmaceuticals was measured in filter-sterilized municipal and hospital wastewater samples from Gothenburg, Sweden. The effects on HGT of the chemical mixtures in these samples were investigated by exposing a complex bacterial donor community together with a GFP-tagged E. coli recipient strain. Recipients that captured sulfonamide resistance-conferring mobile genetic elements (MGEs) from the bacterial community were enumerated and characterized by replicon typing, antibiotic susceptibility testing and long read sequencing. While exposure to municipal wastewater did not result in any detectable change in HGT rates, exposure to hospital wastewater was associated with an increase in the proportion of recipients that acquired sulfonamide resistance but also a drastic decrease in the total number of recipients. Although, concentrations were generally higher in hospital than municipal wastewater, none of the measured substances could individually explain the observed effects of hospital wastewater. The great majority of the MGEs captured were IncN plasmids, and resistance to several antibiotics was co-transferred in most cases. Taken together, the data show no evidence that chemicals present in the studied municipal wastewater induce HGT. Still, the increased relative abundance of transconjugants after exposure to hospital wastewater could have implications for the risks of both emergence and transmission of resistant bacteria.
Mostrar más [+] Menos [-]Natural daily patterns in fish behaviour may confound results of ecotoxicological testing
2021
Thoré, Eli S.J. | Brendonck, Luc | Pinceel, Tom
Low doses of neuroactive chemicals end up in the environment and disrupt behaviour of non-target organisms. Although a whole range of studies have documented pollutant-induced changes in behaviour, natural daily variability in behaviour is rarely taken into account. This is surprising because biological rhythms may affect the outcome of experiments, are adaptive and are expected to be sensitive to neurochemical exposure. Here, we exploit daily behavioural variation in the fish model Nothobranchius furzeri to examine if behavioural effects of chronic exposure (74 days) to an environmentally relevant level (28 ng/L) of the neurochemical fluoxetine depend on the time of day. Fluoxetine exposure induced an increase in anxiety-related behaviour that was slightly more pronounced in the evening compared to the morning. Moreover, open-field locomotor activity was disrupted and daily patterns in activity lifted upon exposure to the compound. These results imply that short-term behavioural variability should be considered both to standardise ecological risk assessment of neuroactive chemicals as well as to better understand the environmental impact of such compounds in aquatic ecosystems.
Mostrar más [+] Menos [-]Variations in nitrogen removal rates and microbial communities over sediment depth in Daya Bay, China
2021
Wu, Jiapeng | Hong, Yiguo | Liu, Xiaohan | Hu, Yaohao
Depth-related variations in the activities, abundances, and community composition of denitrification and anaerobic ammonia oxidation (anammox) bacteria in coastal sediment cores remain poorly understood. In this study, we used ¹⁵N-labelled incubation, quantitative polymerase chain reaction (qPCR), and high-throughput sequencing techniques to reveal the structure and function of denitrifiers and anammox bacteria in sediment cores (almost 100 cm depth) collected in winter and summer from four locations in Daya Bay. The results indicated that the activities and abundances of both denitrifiers and anammox bacteria were detected even in deeper sediments with low concentrations of dissolved inorganic nitrogen (DIN). The potential rates, abundances, and community compositions of denitrifiers and anammox bacteria only varied spatially. In the surface sediment (top 2 cm), denitrifiers had significantly higher activities and abundances than anammox bacteria, but the relative contribution of anammox bacteria to nitrogen loss increased to >60% in the subsurface sediments. Phylogenetic analysis revealed that nirS-type denitrifiers were affiliated to 10 different clusters and Candidatus Scalindua dominated the anammox community in the whole sediments. Furthermore, both denitrification and anammox bacterial communities in the subsurface sediments were distinct from those in the surface sediments. Coupled nitrification and denitrification or anammox may play significant roles in removing fixed N, and the availability of electronic acceptors (e.g. nitrite and nitrate) strongly influenced the N loss activities in the subsurface sediment, emphasising its role as a sink for buried N.
Mostrar más [+] Menos [-]A comprehensive review of adaptations in plants under arsenic toxicity: Physiological, metabolic and molecular interventions
2021
Nabi, Aarifa | Naeem, M. | Aftab, Tariq | Khan, M. Masroor A. | Ahmad, Parvaiz
Arsenic (As) is recognized as a toxic metalloid and a severe threat to biodiversity due to its contamination. Soil and groundwater contamination with this metalloid has become a major concern. Large fractions of cultivable lands are becoming infertile gradually due to the irrigation of As contaminated water released from various sources. The toxicity of As causes the generation of free radicals, which are harmful to cellular metabolism and functions of plants. It alters the growth, metabolic, physiological, and molecular functions of the plants due to oxidative burst. Plants employ different signaling mechanisms to face the As toxicity like phosphate cascade, MAPK (Mitogen-Activated Protein Kinase), Ca-calmodulin, hormones, and ROS-signaling. The toxicity of As may significantly be reduced through various remediation techniques. Among them, the microbial-assisted remediation technique is cost-effective and eco-friendly. It breaks down the metalloid into less harmful species through various processes viz. biovolatilization, biomethylation, and transformation. Moreover, the adaptation strategies towards As toxicity are vacuolar sequestration, involvement of plant defense mechanism, and restricting its uptake from plant roots to above-ground parts. The speciation, uptake, transport, metabolism, ion dynamics, signaling pathways, crosstalk with phytohormones and gaseous molecules, as well as harmful impacts of the As on physiological processes, overall development of plants and remediation techniques are summarized in this review.
Mostrar más [+] Menos [-]Exposure to hexafluoropropylene oxide dimer acid (HFPO-DA) disturbs the gut barrier function and gut microbiota in mice
2021
Xie, Xiaoxian | Zhou, Jiafeng | Hu, Luting | Shu, Ruonan | Zhang, Mengya | Xiong, Ze | Wu, Fengchun | Fu, Zhengwei
Hexafluoropropylene oxide dimer acid (HFPO-DA) is the substitute for perfluoro octanoic acid (PFOA), and recently it has been detected in environmental water samples worldwide and has multiple toxicities. However, whether it will affect the intestines and gut microbiota remains unclear. In this study, in order to evaluate the gut toxicity of HFPO-DA in mammals, male mice were orally exposed to 0, 2, 20, 200 μg/L HFPO-DA, respectively, for 6 weeks. Our results showed that HFPO-DA exposure caused colonic inflammation which was coupled with increased TNF-α levels in serum and increased mRNA expression levels of TNF-α, p65, TLR4, MCP-1 of the colon in mice after exposure to 200 μg/L HFPO-DA. We also found that HFPO-DA exposure induced the decreased mRNA expression levels and protein levels of MUC2 and ZO-1, which means the dysfunction of gut barrier in the colon. In the ileum, we found that HFPO-DA exposure induced the increased mRNA expression levels of various inflammatory factors, but no obvious changes was found to barrier function. Additionally, HFPO-DA exposure caused the imbalance of cecal gut microbiota and changes of cecal microbiota diversity. Taken together, all these results indicate the potential gut toxicity of HFPO-DA and is perceived as a major problem of health risk that affects the inflammation, gut barrier dysfunction, and gut microbiota disturbance in mammals.
Mostrar más [+] Menos [-]Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
Mostrar más [+] Menos [-]Performance of faecal indicator bacteria, microbial source tracking, and pollution risk mapping in highland tropical water
2021
Goshu, G. | Koelmans, A.A. | de Klein, J.J.M.
Faecal indicator bacteria (FIB) are used for the assessment of faecal pollution and possible water quality deterioration. There is growing evidence that FIB used in temperate regions are not adequate and reliable to detect faecal pollution in tropical regions. Hence, this study evaluated the adequacy of FIB, including total coliforms (TC), Escherichia coli (EC), Enterococci (IEC), and Clostridium perfringens (CP) in the high-altitude, tropical country of Ethiopia. In addition to FIB, for microbial source tracking (MST), a ruminant-associated molecular marker was applied at different water types and altitudes, and faecal pollution risk mapping was conducted based on consensus FIB. The performances of the indicators were evaluated at 22 sites from different water types. The results indicate that EC cell enumeration and CP spore determination perform well for faecal contamination monitoring. Most of the sub-basins of Lake Tana were found to be moderately to highly polluted, and the levels of pollution were demonstrated to be higher in the rainy season than in the post-rainy season. Markers associated with ruminants (BacR) were identified in more than three quarters of the sites. Moderate to high levels of faecal pollution were found in most sub-basins, and the highest levels were found during the rainy season. A bacterial pollution risk map was developed for sub-basins of Lake Tana, including the un-gauged sub-basins. We demonstrate how bacterial pollution risk mapping can aid in improvements to water quality testing and reduce risk to the general population from stream bacteria.
Mostrar más [+] Menos [-]Distribution of cyclic volatile methylsiloxanes in drinking water, tap water, surface water, and wastewater in Hanoi, Vietnam
2021
Nu Nguyen, Ha My | Khieu, Hanh Thi | Ta, Ngoc Anh | Le, Huong Quang | Nguyen, Trung Quang | Do, Trung Quang | Hoang, Anh Quoc | Kannan, Kurunthachalam | Tran, Tri Manh
In this study, four cyclic volatile methylsiloxanes (cVMSs) were determined in drinking water, tap water, surface water, and wastewater samples collected from Hanoi metropolitan area, Vietnam, during August to December 2020 (dry season) by using solid phase extraction combined with gas chromatography tandem mass spectrometry. Highest concentrations of cVMSs in the range of 63–7400 ng/L (mean/median: 1840/1310 ng/L) were found in wastewater samples. A significant difference existed in the concentrations of cVMSs between influent and effluent of a wastewater treatment plant. The sum concentrations of four cVMSs in lake water, tap water, and bottled water samples were in the ranges of 67.0–1100 ng/L (mean/median: 350/282 ng/L), 19.8–350 ng/L (12.6/12.3 ng/L), and 2.31–28.1 ng/L (10.3/8.23 ng/L), respectively. Among the four cVMSs, decamethylcyclopentasiloxane (D5) was found at the highest concentrations in all water samples analyzed. The mean exposure doses of cVMSs calculated for adults and children through the consumption of drinking were 0.409 and 0.412 ng/kg-bw/day, respectively. Human exposure to cVMSs calculated through drinking water consumption was significantly lower than that reported for inhalation.
Mostrar más [+] Menos [-]A novel approach for long-term spectral monitoring of desert shrubs affected by an oil spill
2021
Ignat, Timea | De Falco, Natalie | Berger-Tal, Reut | Rachmilevitch, Shimon | Karnieli, Arnon
Crude oil pollution is a global environmental concern since it persists in the environment longer than most conventional carbon sources. In December 2014, the hyper-arid Evrona Nature Reserve, Israel, experienced large-scale contamination when crude oil spilled. The overarching goal of the study was to investigate the possible changes, caused by an accidental crude oil spill, in the leaf reflectance and biochemical composition of four natural habitat desert shrubs. The specific objectives were (1) to monitor the biochemical properties of dominant shrub species in the polluted and control areas; (2) to study the long-term consequences of the contamination; (3) to provide information that will assist in planning rehabilitation actions; and (4) to explore the feasibility of vegetation indices (VIs), along with the machine learning (ML) technique, for detecting stressed shrubs based on the full spectral range. Four measurement campaigns were conducted in 2018 and 2019. Along with the various stress indicators, field spectral measurements were performed in the range of 350–2500 nm. A regression analysis to examine the relation of leaf reflectance to biochemical contents was carried out, to reveal the relevant wavelengths in which polluted and control plants differ. Vegetation indices applied in previous studies were found to be less sensitive for indirect detection of long-term oil contamination. A novel spectral index, based on indicative spectral bands, named the “normalized blue-green stress index” (NBGSI), was established. The NBGSI distinguished significantly between shrubs located in the polluted and in the control areas. The NBGSI showed a strong linear correlation with pheophytin a. Machine learning classification algorithms obtained high overall prediction accuracy in distinguishing between shrubs located in the oil-polluted and the control sites, indicating internal component differences. The findings of this study demonstrate the efficacy of indirect and non-destructive spectral tools for detecting and monitoring oil pollution stress in shrubs.
Mostrar más [+] Menos [-]Effect of polyethylene microplastics on oxidative stress and histopathology damages in Litopenaeus vannamei
2021
Hsieh, Shu-Ling | Wu, Yi-Chen | Xu, Ruo-Qi | Chen, Ya-Ting | Chen, Chiu-Wen | Singhania, Reeta Rani | Dong, Cheng-Di
There has been a significant increase in the microplastic (MP) polluting the ocean in recent time which is regarded as toxic for living organisms. In this study, Fluorescent red polyethylene microspheres (FRPE) were administered intramuscularly to Litopenaeus vannamei juveniles at the concentration of 0.1, 0.2, 0.5 and 1.0 μg (g shrimp)⁻¹, and the survival rate was recorded. Analysis of the hepatopancreas for antioxidant enzyme activity and gene expression were done after seven days. Further tissue morphology and accumulation of FRPE was analysed. The results showed that FRPE at 0.5 and 1.0 μg (g shrimp)⁻¹ reduce the survival rate of L. vannamei. FRPE at 0.5 and 1.0 μg (g shrimp)⁻¹ reduced superoxide dismutase (SOD) activity; FRPE at different concentrations reduced catalase (CAT) activity; FRPE at 0.2, 0.5 and 1.0 μg (g shrimp)⁻¹ increased the lipid peroxide thiobarbituric acid (TBARS) content. FRPE at 0.1, 0.2, and 0.5 μg (g shrimp)⁻¹ significantly affect the performance of SOD and CAT genes; FRPE at 0.2 and 0.5 μg (g shrimp)⁻¹ significantly improves GPx gene performance; FRPE at 1.0 μg (g shrimp)⁻¹ significantly reduced the expression of GPx genes. Analysis of tissue morphology shows that FRPE cause muscle, midgut gland, and hepatopancreas, and gill damage at different concentrations. In the results of accumulation of microplastic, FRPE accumulated in gill tissue at 0.2 and 0.5 μg (g shrimp)⁻¹; FRPE accumulated in gill, muscle and hepatopancreas tissue at 1.0 μg (g shrimp)⁻¹. Based on the above results, FRPE at 0.5 and 1.0 μg (g shrimp)⁻¹ can regulate the antioxidant enzymes of L. vannamei, increase lipid peroxide content, cause tissue damage by accumulating in the tissues. The rate of survival decreased in L. vannamei, and the impact of FRPE at 1.0 μg (g shrimp)⁻¹ was significant.
Mostrar más [+] Menos [-]