Refinar búsqueda
Resultados 1451-1460 de 7,214
Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils
2022
Yang, Jingxuan | Zou, Lina | Zheng, Lei | Yuan, Zhaofeng | Huang, Ketan | Gustave, Williamson | Shi, Lanxia | Tang, Xianjin | Liu, Xingmei | Xu, Jianming
Arsenic (As) is a toxic metalloid that is ubiquitous in paddy soils, where passivation is the most widely used method for remediating As contamination. Recently, anaerobic methane oxidation coupled with arsenate (As(V)) reduction (AOM-AsR) has been shown to act as a critical driver for As release in paddy fields. However, the effect and mechanism of the passivators on the AOM-AsR process remain unclear. In this study, we incubated arsenate-contaminated paddy soils under anaerobic conditions. Using isotopically labelled methane and different passivators, we found that an iron-based passivator containing calcium sulfate and iron oxide (9:1, m/m) named IBP showed a much better performance than the other passivators. Adding IBP decreased the arsenite (As(III)) concentration in the soil solution by 78% and increased the AOM rate by 55%. Furthermore, we employed high-throughput sequencing and real-time quantitative polymerase chain reaction (qPCR) to investigate the ability of IBP to control As release mediated by AOM-AsR in paddy fields, as well as its underlying mechanism. Our results showed that IBP addition significantly increased anaerobic methanotrophic (ANME) archaea (ANME-2a-c, ANME-2d, and ANME-3) by 91%, and increased the methane-oxidizing bacterium Methylobacter by 262%. Similarly, IBP addition significantly increased the Fe(III) concentration in soil solution by 39% and increased the absolute abundance of Fe(III)-reducing bacteria (Geobacteraceae) by 21 times in soil. Adding IBP may significantly promote AOM coupled with Fe(III) reduction, significantly reducing electron transfer from AOM to As(V) reduction. Hence, IBP may be used as an efficient passivator to remediate As-contaminated soil using an active AOM-AsR process. These results provide a novel insight into controlling soil As release by regulating an active and critical As mobilization pathway in the environment.
Mostrar más [+] Menos [-]Integration of transcriptomic and proteomic reveals the toxicological molecular mechanisms of decabromodiphenyl ethane (DBDPE) on Pleurotus ostreatus
2022
Li, Wanlun | Wang, Shutao | Chen, Yangyang | Liu, Lu | Hou, Shuying | You, Hong
Decabromodiphenyl ethane (DBDPE), as one of the most widely used new brominated flame retardants (NBFRs), can pose a potential threat to human health and the environment. An integrated transcriptome and proteome was performed for investigating the toxicological molecular mechanisms of Pleurotus ostreatus (P. ostreatus) during the biodegradation of DBDPE at the concentrations of 5 and 20 mg/L. A total of 1193/1018 and 92/126 differentially expressed genes/proteins (DEGs/DEPs) were found, respectively, with DBDPE exposure at 5 and 20 mg/L. These DEGs and DEPs were mainly involved in the cellular process as well as metabolic process. DEPs for oxidation-reduction process and hydrolase activity were up-regulated, and those for membrane, lipid metabolic process and transmembrane transport were down-regulated. The DEGs and DEPs related to some key enzymes were down-regulated, such as NADH dehydrogenase/oxidoreductase, succinate dehydrogenase, cytochrome C1 protein, cytochrome-c oxidase/reductase and ATP synthase, which indicated that DBDPE affected the oxidative phosphorylation as well as tricarboxylic acid (TCA) cycle. Cytochrome P450 enzymes (CYPs) might be involved in DBDPE degradation through hydroxylation and oxidation. Some stress proteins were induced to resist DBDPE toxicity, including major facilitator superfamily (MFS) transporter, superoxide dismutase (SOD), molecular chaperones, heat shock proteins (HSP20, HSP26, HSP42), 60S ribosomal protein and histone H4. The findings help revealing the toxicological molecular mechanisms of DBDPE on P. ostreatus, aiming to improve the removal of DBDPE.
Mostrar más [+] Menos [-]Metolachlor adsorption using walnut shell biochar modified by soil minerals
2022
Liu, Lu | Li, Xiaohan | Wang, Xiaorou | Wang, Yuxin | Shao, Ziyi | Liu, Xiao | Shan, Dexin | Liu, Zhihua | Dai, Yingjie
The removal of pesticide residues in soil is a research hotspot. The metolachlor (MET) adsorption by walnut shell biochar (BC) modified with montmorillonite (MBC), illite (IBC), and kaolinite (KBC), as well as the original BC (OBC) was investigated. The characteristics of samples were studied by scanning electron microscopy and mapping analysis, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and chemical stability analysis. The effects of the dosage, ionic strength, and pH, and determined the adsorption kinetics and isotherms for MET with the BCs were analyzed. In addition, response surface methodology regression model analysis was conducted and the adsorption mechanisms were investigated. The results showed that the thermal stability and chemical stability of MBC, IBC, and KBC were higher than those of OBC, and MBC had the greatest stability. The MET adsorption rates of OBC, MBC, IBC, and KBC were 62.15%, 92.47%, 87.97%, and 83.31%, respectively. The kinetic fitting results and adsorption mechanisms showed that the modification of BC with minerals enhanced the physical adsorption of MET. The maximum MET adsorption capacities by OBC, MBC, IBC, and KBC were 39.68 mg g⁻¹, 68.49 mg g⁻¹, 65.79 mg g⁻¹, and 65.36 mg g⁻¹, respectively. Hydrogen bonds, π–π bonds, coordination bonds, and hydrophobic interactions were the key adsorption mechanisms. Therefore, the mineral-modified BCs were characterized by high adsorption rates and stability. This approach can make BC more efficient, with higher performance as a low cost soil amendment.
Mostrar más [+] Menos [-]Size-specific sensitivity of cladocerans to freshwater salinization: Evidences from the changes in life history and population dynamics
2022
Huang, Jing | Li, Yurou | Sun, Yunfei | Zhang, Lu | Lyu, Kai | Yang, Zhou
The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.
Mostrar más [+] Menos [-]On-site measured emission factors of polycyclic aromatic hydrocarbons for different types of marine vessels
2022
Wang, Lizhi | Du, Wei | Yun, Xiao | Chen, Yuanchen | Zhu, Xi | Shen, Huizhong | Shen, Guofeng | Liu, Junfeng | Wang, Xuejun | Tao, Shu
A portable emission sampling system was used to perform on-site measurements of the emission factors (EFs; quantities of pollutants emitted per unit of energy consumed) of 29 polycyclic aromatic hydrocarbons (PAHs) for five types of marine vessels using light diesel in Hainan Province, China. Both gaseous- and particulate-phase PAHs from vessel emissions were sampled and measured using gas chromatography coupled with mass spectrometry (GC-MS), and the PAH EFs were calculated based on the carbon mass balance method. The average EFs of gaseous- and particulate-phase PAHs were 6.2 ± 7.8 and 17 ± 26 mg/kg, with naphthalene (NAP) and phenanthrene (PHE) dominating the gaseous- and particulate-phase PAH emissions, respectively. Among the five types of vessels, the EFs for small fishing boats were significantly higher than those for other types of vessels, and the lowest EFs were found for tug boats. Composition profiles and typical isomer ratios of PAHs were calculated for five types of vessels. Particulate-phase PAHs accounted for 63 ± 16% of the total emissions of 29 PAH species, and the particulate/gaseous-phase partitioning of PAHs was dominated by organic carbon (OC) absorption rather than black carbon (BC) adsorption. Emission factors of PAHs under different activity conditions were measured and calculated, and relatively higher EFs were found in the maneuvering mode for medium fishing boats and in the operating mode for engineering vessels. No significant differences were found among the PAH composition profiles under different activity conditions.
Mostrar más [+] Menos [-]Varroa mite and deformed wing virus infestations interactively make honey bees (Apis mellifera) more susceptible to insecticides
2022
Zhu, Yu-Cheng | Yao, Jianxiu | Wang, Yanhua
Varroa mite is one of the major adverse factors causing honey bee population decline. In this study, Varroa destructor-infested and uninfested honey bee colonies were established by selective applying miticide (Apivar® amitraz). Mite population was monitored monthly (April–October 2016), and deformed wing virus (DWV) loading was detected seasonally (April, July, and October). Four immunity- and two physiology-related gene expressions, natural mortality, and susceptibility to five insecticides were comparatively and seasonally examined in field-collected honey bee workers. Results showed that Apivar-treated bee colonies had minor or undetectable mite and DWV (using RT-qPCR) infestations in whole bee season, while untreated colonies had substantially higher mite and DWV infestations. In untreated colonies, Varroa mite population irregularly fluctuated over the bee season with higher mite counts in Jun (318 ± 89 mites dropped in 48 h) or August (302) than that (25 ± 4 or 34) in October, and mite population density was not dynamically or closely correlated with the seasonal shift of honey bee natural mortality (regression slope = −0.5212). Unlike mite, DWV titer in untreated colonies progressively increased over the bee season, and it was highly correlated (R² = 1) with the seasonal increase of honey bee natural mortality. Significantly lower gene expressions of dor, PPO, mfe, potentially PPOa and eat as well, in untreated colonies also indicated an association of increased DWV infestation with decreased physiological and immunity-related functions in late-season honey bees. Furthermore, bees with lower mite/DWV infestations exhibited generally consistently lower susceptibilities (contact and oral toxicities) to five representative insecticides than the bees without Apivar treatment. All of these data from this study consistently indicated an interaction of Varroa/viral infestations with insecticide susceptibilities in honey bees, potentially through impairing bee's physiology and immunity, emphasizing the importance of mite control in order to minimize honey bee decline.
Mostrar más [+] Menos [-]Multisize particulate matter and volatile organic compounds in arid and semiarid areas of Northwest China
2022
Zhou, Xi | Li, Zhongqin | Zhang, Tingjun | Wang, Feiteng | Tao, Yan | Zhang, Xin
To investigate the chemical components, sources, and interactions of particulate matter (PM) and volatile organic compounds (VOCs), a field campaign was implemented during the spring of 2018 in nine cities in northwestern (NW) China. PM was mainly contributed by organic matter and water-soluble inorganic ions (41% for PM₁₀ and approximately 60% for PM₂.₅ and PM₁). Two typical haze patterns were observed: anthropogenic pollution type (AP-type), wherein contributions of sulfate, nitrate, and ammonium (SNA) increased, and dust pollution type (DP-type), wherein contributions of Ca²⁺ increased and SNA decreased. Source appointment suggested that regional sources contributed close to half to PM₂.₅ pollution (40% for AP-type and 50% for DP-type). Thus, sources from regional transport are also important for haze and dust pollution. The ranking of VOC concentrations was methanol > acetaldehyde > formic acid + ethanol > acetone. Compared with other cities, there are higher oxygenated VOCs (OVOCs) and lower aromatics in NW China. The relationships between VOCs and PM were discussed. The dominating secondary organic aerosols (SOA) formation potential precursors were C₁₀–aromatics, xylene, and styrene under low–nitrogen oxide (NOx) conditions, and benzene, C₁₀–aromatics, and toluene dominated under high–NOx conditions. The quadratic polynomial was the most suitable fitting model for their correlation, and the results suggested that VOC oxidations explained 6.1–10.8% and 9.9–20.7% of SOA formation under high–NOx and low–NOx conditions, respectively.
Mostrar más [+] Menos [-]Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism, osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings
2022
Alamri, Saud | Siddiqui, Manzer H. | Mukherjee, Soumya | Kumar, Ritesh | Kalaji, Hazem M. | Irfan, Mohammad | Minkina, Tatiana | Rajput, Vishnu D.
There is little information available to decipher the interaction between molybdenum (Mo) and nitric oxide (NO) in mitigating arsenic (Asⱽ) stress in plants. The present work highlights the associative role of exogenous Mo and endogenous NO signaling in regulating Asⱽ tolerance in wheat seedlings. Application of Mo (1 μM) on 25-day-old wheat seedlings grown in the presence (5 μM) or absence of Asⱽ stress caused improvement of photosynthetic pigment metabolism, reduction of electrolytic leakage and reactive oxygen species (ROS), and higher accumulation of osmolytes (proline and total soluble sugars). The molybdenum treatment upregulated antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase and glutathione reductase. In addition, the accumulation of nonenzymatic antioxidants (ascorbate and glutathione) was correlated with an increase in ascorbate peroxidase and glutathione reductase activity. The application of cPTIO (endogenous NO scavenger; 100 μM) reversed the Mo-mediated effects, thus indicating that endogenous NO may accompany Mo-induced mitigation of Asⱽ stress. Mo treatment stimulated the accumulation of endogenous NO in the presence of Asⱽ stress. Thus, it is evident that Mo and NO-mediated Asⱽ stress tolerance in wheat seedlings are primarily operative through chlorophyll restoration, osmolytes accumulation, reduced electrolytic leakage, and ROS homeostasis.
Mostrar más [+] Menos [-]Cooperation of multiple active species generated in hydrogen peroxide activation by iron porphyrin for phenolic pollutants degradation
2022
Yang, Xiaorong | Hu, Jingping | Wu, Longsheng | Hou, Huijie | Liang, Sha | Yang, Jiakuan
The narrow acid pH range and the nonselectivity of the dominant •OH limit the Fenton systems to remediate the organic wastewater. Inspired by the role of heme in physiological processes, we employed iron porphyrin as a novel homogeneous catalyst to address this issue. Multiple active species are identified during the activation of H₂O₂, including high-valent iron porphyrin ((por)Fe(IV)) species ((por)Fe(IV)–OH, (por)⁺•Fe(IV)=O) and oxygen-centered radicals (•OH, HO₂•/•O₂⁻), as well as atomic hydrogen (*H) and carbon-centered radicals. With the cooperation of these active species, the degradation of pollutants could be resistant to the interference of concomitant ions and proceed over a wide pH range. This cooperative behavior is further verified by intermediates identified from bisphenol A degradation. Specifically, the presence of *H could facilitate the cleavage of the C–C bond and the addition of unsaturated or aromatic molecules. (Por)⁺•Fe(IV)=O could hydroxylate substrates with an oxygen rebound mechanism. Hydrogen atom abstraction of contaminants could be performed by (por)Fe(IV)–OH to form desaturated products by attacking oxygen-centered radicals. The ecotoxicity of bisphenol A could be significantly decreased through degradation. This study would provide a new approach to wastewater treatment and shed light on the interaction between metalloporphyrin and peroxide in an aqueous solution.
Mostrar más [+] Menos [-]Microbiota and mobile genetic elements influence antibiotic resistance genes in dust from dense urban public places
2022
Feng, Tianshu | Han, Qian | Su, Wanghong | Yu, Qiaoling | Yang, Jiawei | Li, Huan
Many contaminants were carried by dust, a common environment media that is easy to contact with human beings, and antibiotic resistance genes (ARGs) as an emergency pollutant also harbor in dust and pose serious threats to human health especially those carried by opportunistic pathogens because inactivation of antibiotics caused by ARGs may enhance pathogenicity. Considering there is a gap of investigation of dust ARGs, 16 S rRNA gene sequences and high-throughput quantitative PCR were employed to obtain information of microbial communities and accumulated ARGs in dust from different urban places, including the malls, hospitals, schools and parks, to investigate the distribution and influencing factors of ARGs and discover the potential hosts of ARGs in dust. Here, 9 types of ARGs such as sulfonamide, tetracycline, and beta-lactamase and 71 subtypes of ARGs like sul1, tetM-01, and drfA1 were detected in dust. ARGs had varying distribution in different public places and seasons in dust. The abundances of total ARGs, MLSB and tetracycline genes were higher in spring than summer. The diversity of ARGs was highest in malls, follow by hospitals, schools, and parks. Additionally, multi-drug resistance genes in dust were more abundant in hospitals than in schools and parks. The microbes were distinguished as the most important driving factors for ARGs in dust, followed by the mobile genetic elements (MGEs) and different places, while dust physicochemical parameters only exert a negligible impact. Notably, several opportunistic pathogens like the Streptococcus, Vibrio, and Pseudomonas were inferred as potential hosts of high-risk ARGs such as mecA, tetM-02, and tetO-01 in dust because of strongly positive co-occurrence. These results imply that dust is likely an important reservoir of ARGs. We should realize that ARGs may be harbored in some opportunistic pathogens occur in dust and endanger human health because of dust contacting to human easily.
Mostrar más [+] Menos [-]