Refinar búsqueda
Resultados 1491-1500 de 6,548
Polycyclic aromatic hydrocarbons in soils and sediments in Southwest Nigeria Texto completo
2020
Parra, Yendry Jomolca | Oloyede, Oyedibu Oyebayo | Pereira, Guilherme Martins | de Almeida Lima, Paulo Henrique Amaro | da Silva Caumo, Sofia Ellen | Morenikeji, Olajumoke Abimbola | de Castro Vasconcellos, Pérola
Polycyclic Aromatic Hydrocarbons are strongly associated with agricultural, residential, transportation, and industrial activities. This study determined by GC-MS the concentration of 15 PAHs in soil and sediments at different sites from the Awotan-Asunle dumpsite area in the Southwestern region of Nigeria, which is one of the largest dumpsites in Africa. The sources of contamination, toxicity and associated risks for human health were also evaluated. Total PAHs concentrations were from 489 to 5616 μg kg⁻¹, and 642–2159 μg kg⁻¹, for soil and sediment, respectively. For soils, the highest values were observed for indeno[1,2,3-c,d]pyrene, coronene, and phenanthrene, while for sediments, the most abundant species were pyrene, fluoranthene and phenanthrene. Diagnostic ratios were used to determine the sources of PAHs and suggested that the compounds were mainly emitted from non-traffic sources. The total BaP-TEQ and BaP-MEQ for soils did not exceed the value recommended by the Canadian guideline since the country does not present guidelines. The analysis of incremental lifetime cancer risk was high mostly for dermal and ingestion exposures in the population. This study might provide valuable information regarding exposure to PAHs in soils of a Nigerian community.
Mostrar más [+] Menos [-]Mussels facilitate the sinking of microplastics to bottom sediments and their subsequent uptake by detritus-feeders Texto completo
2020
Piarulli, Stefania | Airoldi, Laura
Microplastics (MP) are omnipresent contaminants in the oceans, however little is known about the MP transfer between marine compartments and species. Three connected laboratory experiments using the filter-feeding mussel Mytilus galloprovincialis and the omnivorous polichaete Hediste diversicolor were conducted to evaluate whether the filtering action by mussels affects the vertical transfer of MP of different sizes (MPSMALL = 41 μm; MPLARGE = 129 μm) and densities (polyamide = 1.15 g cm⁻³; polypropylene = 0.92 g cm⁻³) across compartments and species with different feeding modes. Mussels significantly removed MP from the water column by incorporating them into biodeposits. This effect was particularly evident for the MPSMALL, whose deposition from the water column to the bottom was enhanced (about 15%) by the action of mussels. The incorporation of MP into faecal pellets increased the particles’ sinking velocity by about 3–4 orders of magnitude. Conversely, the MP presence significantly decreased the depositional velocities of faecal pellets, and the magnitude of this effect was greater with increasing MP size and decreasing density. The MP incorporation into mussels’ biodeposits also more than doubled the amount of MP uptake by H. diversicolor. We conclude that detrital pathways could be a transfer route of MP across marine compartments and food webs, potentially affecting the distribution of MP in sediments and creating hot-spots of bioavailable MP.
Mostrar más [+] Menos [-]NiSO4 spill inflicts varying mortality between four freshwater mussel species (including protected Unio crassus Philipsson, 1788) in a western Finnish river Texto completo
2020
Leppänen, Jaakko Johannes | Leinikki, Jouni | Väisänen, Anna
Freshwater mussels are one of the most threatened taxonomic groups in the world, and many species are on the brink of local or global extinction. Human activities have altered mussel living conditions in a plethora of ways. One of the most destructive human-induced impacts on running waters is the catastrophic spill of harmful substances, which results in massive die-offs. Even though Finland is regarded as the world’s top country in terms of environmental regulation quality, riverine systems are not safe. In 2014, River Kokemäenjoki in western Finland experienced the worst NiSO4 spill in the country’s history, visibly affecting the mussel community – including protected Unio crassus – along the river. Because freshwater mussel toxicology is grossly understudied (particularly in Europe), any pollution –linked die-offs offer valuable opportunities to study the issue in natural environment. Here, we report the mussel investigations from 2014 and a follow-up study conducted in 2017 in order to assess the variation in species sensitivity on nickel pollution. In total, 104 sites were sampled, and over 20 000 mussels were identified and counted. Our results indicate that the most impacted species (i.e. that which experienced the highest spill-induced mortality) was Anodonta anatina (62%), followed by Unio pictorum (32%), U. crassus (24%) and Unio tumidus (9%). The underlying reason for the sensitivity of A. anatina is not resolved, hence more research is urgently needed. The low mortality among most of the species in 2017 highlights the temporal nature of the pollution impact and the recovery potential of the mussel community. However, the case is more complex with U. crassus population, which may be experiencing delayed impacts of the spill. Because nickel is one of the most commonly produced industrial metals in the world (hence the pollution incident risk is high) and River Kokemäenjoki hosts mussel community typical for European rivers, our results may benefit many researchers and stakeholders dealing with riverine environments.
Mostrar más [+] Menos [-]Large eddy simulation of vehicle emissions dispersion: Implications for on-road remote sensing measurements Texto completo
2020
Huang, Yuhan | Ng, Elvin C.Y. | Surawski, Nic C. | Yam, Yat-Shing | Mok, Wai-Chuen | Liu, Chun-Ho | Zhou, John L. | Organ, Bruce | Chan, Edward F.C.
On-road remote sensing technology measures the concentration ratios of pollutants over CO₂ in the exhaust plume in half a second when a vehicle passes by a measurement site, providing a rapid, non-intrusive and economic tool for vehicle emissions monitoring and control. A key assumption in such measurement is that the emission ratios are constant for a given plume. However, there is a lack of study on this assumption, whose validity could be affected by a number of factors, especially the engine operating conditions and turbulence. To guide the development of the next-generation remote sensing system, this study is conducted to investigate the effects of various factors on the emissions dispersion process in the vehicle near-wake region and their effects on remote sensing measurement. The emissions dispersion process is modelled using Large Eddy Simulation (LES). The studied factors include the height of the remote sensing beam, vehicle speed, acceleration and side wind. The results show that the measurable CO₂ and NO exhaust plumes are relatively short at 30 km/h cruising speed, indicating that a large percentage of remote sensing readings within the measurement duration (0.5 s) are below the sensor detection limit which would distort the derived emission ratio. In addition, the valid measurement region of NO/CO₂ emission ratio is even shorter than the measurable plume and is at the tailpipe height. The effect of vehicle speed (30–90 km/h) on the measurable plume length is insignificant. Under deceleration condition, the length of the valid NO/CO₂ measurement region is shorter than under cruising and acceleration conditions. Side winds from the far-tailpipe direction have a significant effect on remote sensing measurements. The implications of these findings are discussed and possible solutions to improve the accuracy of remote sensing measurement are proposed.
Mostrar más [+] Menos [-]Neurotoxicity of perfluorooctanoic acid and post-exposure recovery due to blueberry anthocyanins in the planarians Dugesia japonica Texto completo
2020
Zhang, Jianyong | Shao, Xinxin | Zhao, Baoying | Zhai, Liming | Liu, Na | Gong, Fangbin | Ma, Xue | Pan, Xiaolu | Zhao, Bosheng | Yuan, Zuoqing | Zhang, Xiufang
Perfluorooctanoic acid (PFOA) is a widely used synthetic industrial chemical which accumulates in ecosystems and organisms. Our study have investigated the neurobehavioral effects of PFOA and the alleviation effects of PFOA-induced neurotoxicity by blueberry anthocyanins (ANT) in Dugesia japonica. The planarians were exposed to PFOA and ANT for ten days. Researchs showed that exposure to PFOA affected locomotor behavior and ANT significantly alleviated the reduction in locomotion induced by PFOA. The regeneration of eyespots and auricles was suppressed by PFOA and was promoted by ANT. Following exposure to PFOA, acetylcholinesterase activity continually decreased and was unaffected in the ANT group, but was elevated after combined administration of PFOA and ANT. Oxidative DNA damage was found in planarians exposed to PFOA and was attenuated after administration of ANT by the alkaline comet assay. Concentrations of three neurotransmitters increased following exposure to PFOA and decreased after administration of ANT. Furthermore, ANT promoted and PFOA inhibited neuronal regeneration. DjotxA, DjotxB, DjFoxG, DjFoxD and Djnlg associated with neural processes were up-regulated following exposure to PFOA. Our findings indicate that PFOA is a neurotoxicant while ANT can attenuate these detrimental effects.
Mostrar más [+] Menos [-]First account of spatio-temporal analysis, historical trends, source apportionment and ecological risk assessment of banned organochlorine pesticides along the Ganga River Texto completo
2020
Sah, Ruchika | Baroth, Anju | Hussain, Syed Ainul
We conducted the first comprehensive assessment of the presence, source, and ecotoxicological implication of 13 banned and restricted organochlorine pesticides (OCPs) in the surface water along the Ganga River for two different seasons. Surface water samples were collected along the 2525 km stretch of the Ganga through 43 sites representing five zones of diverse land-use pattern, pesticide consumption rate, and varied flow. The mean concentrations of ΣOCPs were significantly higher (∼2–5 times) in the post-monsoon or wet season [range: 0.126 to 10.402 μg/L (mean: 2.482 μg/L ± 3.589 and median: 1.433)] than in the post-winter or dry season [range: 0.053 to 3.010 μg/L (mean: 0.765 μg/L±1.033 and median: 0.399)]. Lindane (γ-HCH) was the dominant and most frequently detected pesticide at all the sites, indicating possible continued use of this banned pesticide in agricultural practices. The spatial distribution of OCPs revealed non-significant difference amongst different zones and indicate that point source pollution from the open drains along the Ganga could be responsible for observed trend. Ratio diagnostic analysis highlighted the fresh inputs and potential illegal use of lindane and chlordane at all the zones whereas, historical use of DDT was revealed at the majority of sites. Interestingly, fresh inputs of DDT were observed in the relatively pristine high altitude Upper zone (UZ) suggesting long-range atmospheric transfer and its continued use in the zone. Risk quotient (RQ) analysis revealed high ecotoxicological risks (>1), at all the studied sites for p, p’ DDE. The lower zone (LZ) emerged as a high ecological risk zone. The study highlights that though the OCPs analysed in this study are banned/restricted in India, still the implementation of the ban is poor and delayed and the country requires stricter adherence to its National Implementation Plan (NIP) on pesticides.
Mostrar más [+] Menos [-]Melatonin ameliorates ochratoxin A-induced oxidative stress and apoptosis in porcine oocytes Texto completo
2020
Lan, Mei | Zhang, Yu | Wan, Xiang | Pan, Meng-Hao | Xu, Yao | Sun, Shao-Chen
Melatonin is a hormone which is generated from pineal gland, and it is responsible for the regulation of wake-sleep cycle. Melatonin is a well-known antioxidant and free radical scavenger to protect against multiple type of tissue damage. While ochratoxin A (OTA) is a mycotoxin found widely in contaminated food and foodstuffs, which causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive damage in humans and animals. In present study we report the toxicity of OTA on porcine oocyte quality and the protective effects of melatonin on OTA-exposed oocytes. Using transcriptome analysis our results show that OTA exposure alters the expression of multiple genes in oocytes, indicating its effect on oocyte maturation. The cellular changes following OTA treatment are examined, and the results show that OTA adversely affects oocyte polar body extrusion, which is confirmed by the delay of Cdc2-mediated cell cycle progression. OTA exposure also disrupts meiotic spindle formation, which is confirmed by altered phosphorylated MAPK expression. RNA-seq screening and further fluorescence staining results show that OTA induces aberrant mitochondria distribution and oxidative phosphorylation defects, which then causes oxidative stress, followed by early apoptosis and autophagy. Treatment with melatonin significantly ameliorates oxidative stress and apoptosis, which further protects cell cycle and spindle formation in OTA-exposed oocytes. Collectively, these results show the protective effects of melatonin against defects induced by OTA during porcine meiotic oocyte maturation.
Mostrar más [+] Menos [-]Daphnia enhances relative reproductive allocation in response to toxic microcystis: Changes in the performance of parthenogenetic and sexual reproduction Texto completo
2020
Zhou, Qiming | Lu, Na | Gu, Lei | Sun, Yunfei | Zhang, Lu | Huang, Yuan | Chen, Yafen | Yang, Zhou
Eutrophication and warming lead to frequent occurrence of cyanobacterial blooms, which significantly impact on zooplankton. Freshwater zooplankton Daphnia adopts two distinct ways of reproduction: asexual (parthenogenetic) reproduction for rapidly reproducing many offspring in favorable environment and sexual reproduction for producing resting eggs as seed bank to survive in harsh environments. Daphnia pulex has worse performance in growth and reproduction under the exposure to toxic cyanobacteria Microcystis aeruginosa and tends to allocate less energy to reproduction in the case of insufficient food. However, the relative reproductive allocation strategy (energy allocation) of D. pulex individuals exposed to toxic M. aeruginosa is still unclear. Here we tested the relative reproductive performance of D. pulex fed on solely Chlorella pyrenoidosa (high quality food) or Chlorella mixed with toxic M. aeruginosa (low quality food), based on the parthenogenetic reproduction (life-history experiments) and sexual reproduction (population experiments). The results showed that under low quality food conditions, D. pulex reproduced fewer offspring which were also smaller and thus led to a reduced absolute output in parthenogenetic reproduction, but produced ephippia in the same size and quantity compared to those cultured under high quality food conditions. However, as the body size of maternal D. pulex cultured under low quality food conditions decreased, the relative reproductive allocation significantly increased in both parthenogenetic and sexual reproduction, compared to those cultured under high quality food conditions. In conclusion, D. pulex tend to allocate relatively more energy to reproduction under Microcystis conditions, which is a reasonable strategy for it to decentralize the risks from low-quality food.
Mostrar más [+] Menos [-]Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills Texto completo
2020
Huang, Hui | Wang, Chao | Liu, Shuchang | Sun, Zehao | Zhang, Dezhun | Liu, Caicai | Jiang, Yang | Zhan, Shuyue | Zhang, Haofei | Xu, Ren
The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation.
Mostrar más [+] Menos [-]Role of the proteome in providing phenotypic stability in control and ectomycorrhizal poplar plants exposed to chronic mild Pb stress Texto completo
2020
Szuba, Agnieszka | Marczak, Łukasz | Kozłowski, Rafał
Lead is a dangerous pollutant that accumulates in plant tissues and causes serious damage to plant cell macromolecules. However, plants have evolved numerous tolerance mechanisms, including ectomycorrhizae, to maintain cellular Pb²⁺ at the lowest possible level. When those mechanisms are successful, Pb-exposed plants should exhibit no negative phenotypic changes. However, actual molecular-level plant adjustments at Pb concentrations below the toxicity threshold are largely unknown, similar to the molecular effects of protective ectomycorrhizal root colonization. In this study, we (1) determined the molecular adjustments in plants exposed to Pb but without visible Pb stress symptoms and (2) examined ectomycorrhizal root colonization (the role of fungal biofilters) with respect to molecular-level Pb perception by plant root cells. Biochemical, microscopic, proteomic and metabolomic studies were performed to determine the molecular status of Populus × canescens microcuttings grown in agar medium enriched with 0.75 mM Pb(NO₃)₂. Noninoculated and inoculated with Paxillus involutus poplars were analyzed in two independent comparisons of the corresponding control and Pb treatments. After six weeks of growth, Pb caused no negative phenotypic effects. No Pb-exposed poplar showed impaired growth or decreased leaf pigmentation. Proteomic signals of intensified Pb sequestration in the plant cell wall and vacuoles, cytoskeleton modifications, H⁺-ATPase-14-3-3 interactions, and stabilization of protein turnover in chronically Pb-exposed plants co-occurred with high metabolomic stability. There were no differentially abundant root primary metabolites; only a few differentially abundant root secondary metabolites and no Pb-triggered ROS burst were observed. Our results strongly suggest that proteome adjustments targeting Pb sequestration and ROS scavenging, which are considerably similar but less intensive in ectomycorrhizal poplars than in control poplars due to the P. involutus biofilter (as confirmed in a mineral study), were responsible for the metabolomic and phenotypic stability of poplars exposed to chronic mild Pb stress.
Mostrar más [+] Menos [-]