Refinar búsqueda
Resultados 1541-1550 de 8,010
Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings Texto completo
2021
(Karen A.),
Mine tailings sites are considered as a continuous source of discharged metal(loid)s and residual organic flotation reagents. They are extremely toxic environments representing unique ecological niches for microbial communities. Mine tailings as a source of multi-resistance genes have been poorly investigated. Metagenomic analysis for four active nonferrous metal(loid) tailings sites with different environmental parameters was conducted. The abundance of Thiobacillus, able to tolerate acidity and showing iron- and sulfur/sulfide oxidation capacities, was significantly different (p < 0.05) between acid and neutral tailings sites. Correlation analyses showed that Zn, Pb, TP, Cd, and Cu were the main drivers influencing the bacterial compositions. Multi-metal resistance genes (MRGs) and antibiotic resistance genes (ARGs), such as baca and copA, were found to be co-selected by high concentrations of metal(loid)s tailings. The main contributors to different distributions of MRGs were Thiobacillus and Nocardioides genus, while genera with low abundance (<0.1%) were the main contributors for ARGs. Functional metabolic pathways related to Fe–S metabolism, polycyclic aromatic hydrocarbons (PAHs) degradation and acid stress were largely from Altererythrobacter, Lysobacter, and Thiobacillus, respectively. Such information provides new insights on active tailings with highly toxic contaminants. Short-term metal(loid) exposure of microorganism in active nonferrous metal(loid) tailings contribute to the co-occurrence of ARGs and MRGs, and aggravation of tailings acidification. Our results recommend that the management of microorganisms involved in acid tolerance and metal/antibiotic resistance is of key importance for in-suit treatment of the continuous discharge of tailings with multiple metal(loid) contaminants into impoundments.
Mostrar más [+] Menos [-]Insights on the biological role of ultrafine particles of size PM<0.25: A prospective study from New Delhi Texto completo
2021
When the total ambient PM₂.₅ levels are several-fold higher than the recommended limit, it may be important to study the distributions of different sizes of particulate matter (PM). Here, we assess the distributions of various sizes of total PM₂.₅ for 12 months (on a monthly basis) in New Delhi, India. Importantly, we found that ultrafine particles (i.e., particles <0.5 μm) contribute significantly to total PM₂.₅. PM<₀.₂₅ were the most cytotoxic particles to human lung epithelial cells in all the 12 months. In addition, PM<₀.₂₅ were associated with significantly higher cytotoxicity per unit mass compared to other size fractions constituting PM₂.₅. For any given size of PM, the amount of reactive oxygen species (ROS) generated per unit mass is higher for the month of March as compared to that for the rest of the months in the year. The higher ROS generations for all sizes of PM collected in the month of March was not explained by differences in their metal content values. Our data suggests the lack of correlation between total PM₂.₅ levels and the highly cytotoxic PM<₀.₂₅. In summary, this work establishes the need for policy changes to routinely monitor PM<₀.₂₅ and the necessity to establish exposure limits for PM<₀.₂₅, especially when the total PM₂.₅ levels are breached.
Mostrar más [+] Menos [-]The lead story of the fire at the Notre-Dame cathedral of Paris Texto completo
2021
On 15th April 2019, Parisians watched in shock as Notre-Dame de Paris, the iconic cathedral that has towered over their city for almost 900 years, was engulfed in flames. Although flames destroyed the spire and considerably weakened the structure, no human lives were lost. However, as some amounts of lead volatilized and deposited in the surrounding areas, fears of potential intoxication began to rise. We investigated the impact of this fire on the blood lead levels of adults in Paris according to the distance between the cathedral and where they live or work. The geometric mean of blood lead levels of the study population was 1.49μg/dl (95% CI [1.38–1.62]) with a prevalence of blood lead levels≥5.0μg/dL of 5.0%. Despite the early legitimate fears of intoxication, the fire that destroyed a significant part of the Notre-Dame cathedral did not increase the blood lead levels of adults living and working in the vicinity.
Mostrar más [+] Menos [-]Influences of irrigation and fertilization on soil N cycle and losses from wheat–maize cropping system in northern China Texto completo
2021
Excess of water irrigation and fertilizer consumption by crops has resulted in high soil nitrogen (N) losses and underground water contamination not only in China but worldwide. This study explored the effects of soil N input, soil N output, as well as the effect of different irrigation and N- fertilizer managements on residual N. For this, two consecutive years of winter wheat (Triticum aestivum L.) –summer maize (Zea mays L.) rotation was conducted with: N applied at 0 kg N ha⁻¹ yr⁻¹, 420 kg N ha⁻¹ yr⁻¹ and 600 kg N ha⁻¹ yr⁻¹ under fertigation (DN0, DN420, DN600), and N applied at 0 kg N ha⁻¹ yr⁻¹ and 600 kg N ha⁻¹ yr⁻¹ under flood irrigation (FN0, FN600). The results demonstrated that low irrigation water consumption resulted in a 57.2% lower of irrigation-N input (p < 0.05) in DN600 when compared to FN600, especially in a rainy year like 2015–2016. For N output, no significant difference was found with all N treatments. Soil gaseous N losses were highly correlated with fertilization (p < 0.001) and were reduced by 23.6%–41.7% when fertilizer N was decreased by 30%. Soil N leaching was highly affected by irrigation and a higher reduction was observed under saving irrigation (reduced by 33.9%–57.3%) than under optimized fertilization (reduced by 23.6%–50.7%). The net N surplus was significantly increased with N application rate but was not affected by irrigation treatments. Under the same N level (600 kg N ha⁻¹ yr⁻¹), fertigation increased the Total Nitrogen (TN) stock by 17.5% (0–100 cm) as compared to flood irrigation. These results highlighted the importance to further reduction of soil N losses under optimized fertilization and irrigation combined with N stabilizers or balanced- N fertilization for future agriculture development.
Mostrar más [+] Menos [-]Transcriptome sequencing and metabolite analysis reveal the toxic effects of nanoplastics on tilapia after exposure to polystyrene Texto completo
2021
Plastic particles, which are formed from routinely used plastics and their fragments, have become a new pollutant raising widespread concern about their potential effects. Several studies have been conducted to examine their toxicity, but the effects of nano-sized plastic fragments on freshwater organisms remain largely unclear and need to be further investigated. In this study, larval tilapia were first exposed to 100 nm polystyrene nanoparticles (PS-NPs, 20 mg/L) for seven days and then returned to freshwater without PS-NPs for another seven days in order to determine the toxic effects of PS-NPs at both transcriptomic and metabolomic levels. A total of 203 significantly changed metabolites, and 2,152 differentially expressed unigenes were identified between control and PS-NP treatment groups, control and recovery groups, as well as treatment and recovery groups. Our data suggested that PS-NPs induced abnormal metabolism of glycolipids, energy, and amino acids in tilapia after short-term exposure. Additionally, PS-NPs caused disturbed signaling, as suggested by the transcriptomic results. Different transcriptomic and metabolomic levels between the treatment group and recovery group indicated a persistent impact of PS-NPs on tilapia. The presence of adhesion molecule-related differentially expressed genes (DEGs) suggested that PS-NPs might cause early inflammatory responses. Notably, the detection of chemical stimulus involved in the sensory perception of smell was the most severely impacted biological process. Our work systemically studied the ecotoxicity of nano-sized plastics in aquatic creatures at the molecular and genetic levels, serving as a basis for future investigations on the prevention and treatment of such pollutants.
Mostrar más [+] Menos [-]Transgenerational epigenetic sex determination: Environment experienced by female fish affects offspring sex ratio Texto completo
2021
Sex determination is a complex process that can be influenced by environment in various taxa. Disturbed environments can affect population sex ratios and thus threaten their viability. Emerging evidences support a role of epigenetic mechanisms, notably DNA methylation, in environmental sex determination (ESD). In this work, using zebrafish as model and a transgenerational experiment comprising 4 successive generations, we report a strength link between the promotor methylation level of three genes in female gonads and population sex ratio. One generation of zebrafish was exposed throughout its lifetime to cadmium (Cd), a non-essential metal, at an environmentally relevant concentration. The subsequent generations were not exposed. At the first and the third generation a subset of individuals was exposed to an elevated temperature, a well-known masculinizing factor in zebrafish. While heat was associated to an increase in the methylation level of cyp19a1a gene and population masculinization, foxl2a/dmrt1 methylation levels appeared to be influenced by Cd and fish density leading to offspring feminization. Ancestral Cd exposure indeed led to a progressive feminization of the population over generations and affected the sex plastic response of zebrafish in response to heat. The effect of Cd on the methylation level of foxl2a was observed until the third generation, supporting potential transgenerational inheritance. Our results support (i) a key role of cyp19a1a methylation in SD in zebrafish in response to environmental cues and (ii) the fact that the environment experienced by parents, namely mothers in the present case, can affect their offspring sex ratio via environment-induced DNA methylation changes in gonads.
Mostrar más [+] Menos [-]Evaluation of graphenic and graphitic materials on the adsorption of Triton X-100 from aqueous solution Texto completo
2021
Presently, graphenic nanomaterials are being studied as candidates for wastewater pollutant removal. In this study, two graphite oxides produced from natural graphite with different grain sizes (325 and 10 mesh), their respective reduced graphene oxides and one reduced graphene oxide with nitrogen functional groups were synthesized and tested to remove a surfactant model substrate, Triton X-100, from an aqueous solution. Kinetic experiments were carried out and adjusted to pseudo-first order equation, pseudo-second order equation, Elovich, Chain-Clayton and intra-particle diffusion models. Reduced graphene oxides displayed an instantaneous adsorption due to their accessible and hydrophobic surfaces, while graphite oxides hindered the TX100 adsorption rate due to their highly superficial oxygen content. Results from the adsorption isotherms showed that the Sips model perfectly described the TX100 adsorption behavior of these materials. Higher adsorption capacities were developed with reduced graphene oxides, being maximum for the material produced from the lower graphite grain size (qₑ = 3.55·10⁻⁶ mol/m²), which could be explained by a higher surface area (600 m²/g), a lower amount of superficial oxygen (O/C = 0.04) and a more defected structure (ID/IG = 0.85). Additionally, three commercial high surface area graphites in the range of 100–500 m²/g were evaluated for comparison purposes. In this case, better adsorption results were obtained with a more graphitic material, HSAG100 (qₑ = 1.72·10⁻⁶ mol/m²). However, the best experimental results of this study were obtained using synthesized graphenic materials.
Mostrar más [+] Menos [-]Methane control of cadmium tolerance in alfalfa roots requires hydrogen sulfide Texto completo
2021
Hydrogen sulfide (H₂S) is well known as a gaseous signal in response to heavy metal stress, while methane (CH₄), the most prevalent greenhouse gas, confers cadmium (Cd) tolerance. In this report, the causal link between CH₄ and H₂S controlling Cd tolerance in alfalfa (Medicago sativa) plants was assessed. Our results observed that the administration of CH₄ not only intensifies H₂S metabolism, but also attenuates Cd-triggered growth inhibition in alfalfa seedlings, which were parallel to the alleviated roles in the redox imbalance and cell death in root tissues. Above results were not observed in roots after the removal of endogenous H₂S, either in the presence of either hypotaurine (HT; a H₂S scavenger) or DL-propargylglycine (PAG; a H₂S biosynthesis inhibitor). Using in situ noninvasive microtest technology (NMT) and inductively coupled plasma mass spectroscopy (ICP-MS), subsequent results confirmed the participation of H₂S in CH₄-inhibited Cd influx and accumulation in roots, which could be explained by reestablishing glutathione (GSH) pool (reduced/oxidized GSH and homoglutathione) homeostasis and promoting antioxidant defence. Overall, our results clearly revealed that H₂S operates downstream of CH₄ enhancing tolerance against Cd stress, which are significant for both fundamental and applied plant biology.
Mostrar más [+] Menos [-]Toxic Microcystis aeruginosa alters the resource allocation in Daphnia mitsukuri responding to fish predation cues Texto completo
2021
Many prey organisms adaptively respond to predation risk by inducible defenses with underlying tradeoffs in resource allocation. Cyanobacterial blooms expose zooplankton to poor food conditions, affecting the herbivores’ fitness. Given the interferences on resources allocation and life history traits, poor-quality cyanobacteria are predicted to affect the adaptive predator-induced responses in zooplankton. Here, we exposed two clones (i.e., clones SH and ZJ) of the cladoceran Daphnia mitsukuri to different combinations of fish predation cues and diets containing toxic Microcystis aeruginosa (0%–30%). D. mitsukuri matured at a small size and had elongated relative tail spine as adaptive responses to fish cues. Despite the comparable tail spine defense, fish cue-induced changes in growth and reproduction in the clone SH were more pronounced than those in the clone ZJ under no M. aeruginosa. Animals accumulated microcystin in the whole body with increasing abundance of M. aeruginosa. However, the inducible enhanced tail spine allometry was not affected, resulting in unchanged tail spine defense by Daphnia under all M. aeruginosa treatments. By contrast, M. aeruginosa remarkably decreased the adaptive maturation size and the offspring number in all animals. However, the inducible reproductive effort tended to increase or remain unchanged depending on clones associated with the constant or decreased responses of the somatic growth effort under increasing M. aeruginosa. Our results suggested that toxic M. aeruginosa did not alter the resource allocation to antipredator morphological defense but affected the somatic growth and reproduction in D. mitsukuri under fish cues. The present study highlights the different effects of toxic cyanobacteria on adaptive predator-induced responses in zooplankton, promoting the understanding for the morphological defense-mediated predator–prey interactions in eutrophic environments.
Mostrar más [+] Menos [-]Stronger secondary pollution processes despite decrease in gaseous precursors: A comparative analysis of summer 2020 and 2019 in Beijing Texto completo
2021
To control the spread of COVID-19, China implemented a series of lockdowns, limiting various offline interactions. This provided an opportunity to study the response of air quality to emissions control. By comparing the characteristics of pollution in the summers of 2019 and 2020, we found a significant decrease in gaseous pollutants in 2020. However, particle pollution in the summer of 2020 was more severe; PM₂.₅ levels increased from 35.8 to 44.7 μg m⁻³, and PM₁₀ increased from 51.4 to 69.0 μg m⁻³ from 2019 to 2020. The higher PM₁₀ was caused by two sandstorm events on May 11 and June 3, 2020, while the higher PM₂.₅ was the result of enhanced secondary formation processes indicated by the higher sulfate oxidation rate (SOR) and nitrate oxidation rate (NOR) in 2020. Higher SOR and NOR were attributed mainly to higher relative humidity and stronger oxidizing capacity. Analysis of PMₓ distribution showed that severe haze occurred when particles within Bin2 (size ranging 1–2.5 μm) dominated. SO₄²⁻₍₁/₂.₅₎ and SO₄²⁻₍₂.₅/₁₀₎ remained stable under different periods at 0.5 and 0.8, respectively, indicating that SO₄²⁻ existed mainly in smaller particles. Decreases in NO₃⁻₍₁/₂.₅₎ and increases in NO₃⁻₍₂.₅/₁₀₎ from clean to polluted conditions, similar to the variations in PMₓ distribution, suggest that NO₃⁻ played a role in the worsening of pollution. O₃ concentrations were higher in 2020 (108.6 μg m⁻³) than in 2019 (96.8 μg m⁻³). Marked decreases in fresh NO alleviated the titration of O₃. Furthermore, the oxidation reaction of NO₂ that produces NO₃⁻ was dominant over the photochemical reaction of NO₂ that produces O₃, making NO₂ less important for O₃ pollution. In comparison, a lower VOC/NOₓ ratio (less than 10) meant that Beijing is a VOC-limited area; this indicates that in order to alleviate O₃ pollution in Beijing, emissions of VOCs should be controlled.
Mostrar más [+] Menos [-]