Refinar búsqueda
Resultados 1541-1550 de 7,214
Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution
2022
Guha, Titir | Gopal, Geetha | Mukherjee, Amitava | Kundu, Rita
Almost 81% of nitrogen fertilizers are applied in form of urea but most of it is lost due to volatilization and leaching leading to environmental pollution. In this regard, slow-release nano fertilizers can be an effective solution. Here, we have synthesized different Fe₃O₄-urea nanocomposites with Fe₃O₄ NPs: urea ratio (1:1, 1:2, 1:3) ie. NC-1, 2, and 3 respectively, and checked their efficacy for growth and yield enhancement. Oryza sativa L. cv. Swarna seedlings were treated with different NCs for 14 days in hydroponic conditions and significant up-regulation of photosynthetic efficiency and nitrogen metabolism were observed due to increased availability of nitrogen and iron. The discriminant functional analysis confirmed that the NC3 treatment yielded the best results so further gene expression studies were performed for NC-3 treated seedlings. Significant changes in expression profiles of ammonia and nitrate transporters indicated that NC-3 treatment enhanced nitrogen utilization efficiency (NUE) due to sustained slow release of urea. From pot experiments, we found significant enhancement of growth, grain nutrient content, and NUE in NC supplemented sets. 1.45 fold increase in crop yield was achieved when 50% N was supplemented in form of NC-3 and the rest in form of ammonium nitrate. NC supplementation can also play a vital role in minimizing the use of bulk N fertilizers because, when 75% of the recommended N dose was supplied in form of NC-3, 1.18 fold yield enhancement was found. Thus our results highlight that, slow-release NC-3 can play a major role in increasing the NUE of rice.
Mostrar más [+] Menos [-]Benzalkonium chlorides (C12) inhibits growth but motivates microcystins release of Microcystis aeruginosa revealed by morphological, physiological, and iTRAQ investigation
2022
Qian, Yao | He, Yixin | Li, Hong | Yi, Meiling | Zhang, Lilan | Zhang, Linjie | Liu, Li | Lu, Zhaohui
Due to the large-scale outbreak of Corona Virus Disease (2019), amounts of disinfecting agents was regularly used in public environments and their potential toxicity towards organisms needed to be appreciated. Thus, one mostly used cationic disinfectant, benzalkonium chlorides (BAC(C12)), was selected to assess its potential toxicity one common cyanobacteria Microcystis aeruginosa (M. aeruginosa) in this study. The aims were to explore the toxic effect and mechanism of BAC (C12) on M. aeruginosa growth within 96 h via morphological, physiological, and the relative and absolute quantification (iTRAQ)-based quantitative proteomics variations. The results found that BAC(C12) significantly inhibited cell density of M. aeruginosa at concentrations from 1 mg/L to 10 mg/L, and the 96-h EC₅₀ value was identified to be 3.61 mg/L. Under EC₅₀ concentration, BAC(C12) depressed the photosynthesis activities of M. aeruginosa exhibited by 36% decline of the maximum quantum yield for primary photochemistry (Fv/Fm) value and denaturation of photosynthetic organelle, caused oxidative stress response displayed by the increase of three indexes including superoxide dismutase (SOD), malondialdehyde (MDA), and the intracellular reactive oxygen species (ROS), and destroyed the integrity of cell membranes demonstrated by TEM images and the increase of ex-cellular substances. Then, the iTRAQ-based proteomic analysis demonstrated that BAC(C12) depressed photosynthesis activities through inhibiting the expressions of photosynthetic protein and photosynthetic electron transport related proteins. The suppression of electron transport also led to the increase of superoxide radicals and then posed oxidative stress on cell. Meantime, the 63.63% ascent of extracellular microcystin production of M. aeruginosa was observed, attributing to the high expression of microcystin synthesis proteins and the damage of cell membrane. In sum, BAC(C12) exposure inhibited the growth of M. aeruginosa mainly by depressing photosynthesis, inducing oxidative stress, and breaking the cell membrane. And, it enhanced the release of microcystin from the cyanobacterial cells via up-regulating the microcystin synthesis proteins and inducing the membrane damage, which could enlarge its toxicity to aquatic species.
Mostrar más [+] Menos [-]Cerium exposure in Lake Taihu water aggravates microcystin pollution via enhancing endocytosis of Microcystis aeruginosa
2022
Yang, Qing | Liu, Yongqiang | Wang, Lihong | Zhou, Qing | Cheng, Mengzhu | Zhou, Jiahong | Huang, Xiaohua
Aggravating the pollution of microcystins (MCs) in freshwater environments is detrimental to aquatic living organisms and humans, and thus threatens the stability of ecosystems. Some environmental factors have been verified to promote the production of MCs in Microcystis aeruginosa, thereby aggravating the pollution of MCs. However, the effects of cerium (Ce), the most abundant rare earth element in global water environments, on the production of MCs in M. aeruginosa are unknown. Here, Lake Taihu water was selected as a representative of freshwater environments. By using interdisciplinary methods, it was found that: (1) the exposure level of Ce [Ce(III) and Ce(IV)] in Lake Taihu water is in the range of 0.271–0.282 μg/L; (2) Ce exposure in Lake Taihu water promoted the contents of three main MCs (MC-LR, MC-LW and MC-YR) in M. aeruginosa and water; (3) a cellular mechanism of Ce promoting the production of MCs in M. aeruginosa in Lake Taihu water was suggested: Ce enhanced endocytosis in cells of M. aeruginosa to promote the essential element uptake by M. aeruginosa for MC synthesis. Thus, Ce exposure in Lake Taihu water aggravates the pollution of MCs via enhancing endocytosis in cells of M. aeruginosa. The results provide reference for assessing the environmental risk of Ce in water environments, investigating the mechanism of the pollution of MCs induced by environmental factors, and developing strategies aimed at preventing and controlling the pollution of MCs.
Mostrar más [+] Menos [-]Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from industrial combustion of biomass fuels
2022
Zhang, Chunlin | Bai, Li | Yao, Qian | Li, Jiangyong | Wang, Hao | Shen, Liran | Sippula, Olli | Yang, Jun | Zhao, Jinping | Liu, Jun | Wang, Boguang
Although biomass fuel has always been regarded as a source of sustainable energy, it potentially emits polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). This study investigated PCDD/F emissions from industrial boilers fired with three types of biomass fuel (i.e., bagasse, coffee residue, and biomass pellets) via stack sampling and laboratory analysis. The measured mass concentrations of PCDD/Fs varied among the boilers from 0.0491 to 12.7 ng Nm⁻³ (11% O₂), with the calculated average international toxic equivalent quantity (I-TEQ) from 0.00195 to 1.71 ng I-TEQ Nm⁻³ (11% O₂). Some of them were beyond the limit value for municipal waste incineration. 2,3,4,7,8-PeCDF could be used as a good indicator of dioxin-induced toxicity of stack flue gases from biomass-fired boilers. The PCDFs/PCDDs ratios were more than 1, likely indicating the formation of dioxins in the boilers favored by de novo synthesis. The emission factor (EF) of total PCDD/Fs averaged 5.35 ng I-TEQ kg⁻¹ air-dry biomass (equivalent to 39.0 ng kg⁻¹ air-dry biomass). Specifically, the mean EF was 6.94 ng I-TEQ kg⁻¹ (52.6 ng kg⁻¹) for biomass-pellet-fired boiler, 11.8 ng I-TEQ kg⁻¹ (74.6 ng kg⁻¹) for coffee-residue -fired boiler, and 0.0277 ng I-TEQ kg⁻¹ (0.489 ng kg⁻¹) for bagasse-fired boilers. The annual PCDD/F emission was estimated to be 208 g I-TEQ in 2020 in China, accounting for approximately 2% of the total national annual emission of PCDD/Fs. The results can be used to develop PCDD/Fs emission inventories and offer valuable insights to authorities regarding utilizing biomass in industry in the future.
Mostrar más [+] Menos [-]Bioaugmentation with zeolite-immobilized bacterial consortium OPK results in a bacterial community shift and enhances the bioremediation of crude oil-polluted marine sandy soil microcosms
2022
Laothamteep, Natthariga | Naloka, Kallayanee | Pinyakong, Onruthai
A pyrene-degrading consortium OPK containing Mycolicibacterium strains PO1 and PO2, Novosphingobium pentaromativorans PY1 and Bacillus subtilis FW1 effectively biodegraded medium- and long-chain alkanes as well as mixed hydrocarbons in crude oil. The detection of alkB and CYP153 genes in the genome of OPK members supports its phenotypic ability to effectively degrade a broad range of saturated hydrocarbons in crude oil. Zeolite-immobilized OPK was developed as a ready-to-use bioproduct and it exhibited 74% removal of 1000 mg L⁻¹ crude oil within 96 h in sterilized seawater without nutrient supplementation and maintained high crude oil-removal activity under a broad range of pH values (5.0–9.0), temperatures (30–40 °C) and salinities (20–60‰). In addition, the immobilized OPK retained a high crude oil removal efficacy in semicontinuous experiments and showed reusability for at least 5 cycles. Remarkably, bioaugmentation with zeolite-immobilized OPK in sandy soil microcosms significantly increased crude oil (10,000 mg kg⁻¹ soil) removal from 45% to 80.67% within 21 days compared to biostimulation and natural attenuation. Moreover, bioaugmentation with exogenous immobilized OPK stimulated an increase in the relative abundances of Alcanivorax genus, indigenous hydrocarbon-degrading bacteria, which in turn enhanced removal efficiency of crude oil contamination from sandy soil microcosms. The results indicate positive interactions between the bioaugmented immobilized consortium, harboring Mycolicibacterium as a key player, and indigenous Alcanivorax, which exhibited crucial functions for improving crude oil removal efficacy. The knowledge obtained forms an important basis for further synthesis and handling of a promising bio-based product for enhancing the in situ bioremediation of crude oil-polluted marine environments.
Mostrar más [+] Menos [-]Exposure assessment of PM2.5 using smart spatial interpolation on regulatory air quality stations with clustering of densely-deployed microsensors
2022
Chen, Pi-Cheng | Lin, Yuting
Accurate mapping of air pollutants is essential for epidemiological studies and environmental risk assessments. Concentrations measured by air quality monitoring stations (AQMS) have primarily been used to assess the exposure of PM₂.₅. However, the low coverage and amount of monitoring stations affect the errors of spatial interpolation or geostatistical estimates. In contrast to other integrated approaches developed for improved air pollution estimates, this study utilizes data from low-cost microsensors densely deployed in Taiwan to improve the popular spatial interpolation approach called inverse distance weighting (IDW). A large dataset from thousands of low-cost sensors could improve spatial interpolation by describing the distribution of PM₂.₅ in detail. Therefore, this study presents a clustering-based method to assess the distribution of PM₂.₅. Then, a smarter IDW is performed based on correlated observations from the selected air quality stations. The publicly available data chosen for this investigation pertained to Taiwan, which has deployed 74 monitoring stations and more than 11,000 low-cost sensors since December 2020. The results of leave-one-out cross-validation indicate that there are fewer PM₂.₅ estimation errors in the developed approach than in estimations that use kriging across almost all of the months and sampled dates of 2019 and 2020, particularly those with higher PM₂.₅ spatial heterogeneities. Spatial heterogeneities could result in more significant estimation errors in mainstream approaches. The root mean square error of the monthly average estimate for PM₂.₅ ranged from 1.17 to 3.86 μg/m³. We also found that the clustering of one month characterizing the pattern of PM₂.₅ distribution could perform well in spatial interpolations based on historical data from monitoring stations. According to the information on the openaq platform, low-cost sensors are in demand in cities and areas. This trend might pave the way for the application of the proposed approach in other areas for superior exposure assessments.
Mostrar más [+] Menos [-]PBDEs in the marine environment: Sources, pathways and the role of microplastics
2022
Turner, Andrew
Brominated flame retardants (BFRs) are an important group of additives in plastics that increase resistance to ignition and slow down the rate of burning. Because of concerns about their environmental and human health impacts, however, some of the most widely employed BFRs, including hexabromocyclododecane (HBCD) and commercial mixtures of penta-, octa- and deca- (poly)bromodiphenyl ethers (PBDEs), have been restricted or phased out. In this review, the oceanic sources and pathways of PBDEs, the most widely used BFRs, are evaluated and quantified, with particular focus on emissions due to migration from plastics into the atmosphere versus emissions associated with the input of retarded or contaminated plastics themselves. Calculations based on available measurements of PBDEs in the environment suggest that 3.5 and 135 tonnes of PBDEs are annually deposited in the ocean when scavenged by aerosols and through air-water gas exchange, respectively, with rivers contributing a further ∼40 tonnes. Calculations based on PBDE migration from plastic products in use or awaiting or undergoing disposal yield similar net inputs to the ocean but indicate a relatively rapid decline over the next two decades in association with the reduction in the production and recycling of these chemicals. Estimates associated with the input of PBDEs to the ocean when “bound” to marine plastics and microplastics range from about 360 to 950 tonnes per year based on the annual production of plastics and PBDEs over the past decade, and from about 20 to 50 tonnes per annum based on the abundance and distribution of PBDEs in marine plastic litter. Because of the persistence and pervasiveness of plastics in the ocean and diffusion coefficients for PBDEs on the order of 10⁻²⁰ to 10⁻²⁷ m² s⁻¹, microplastics are likely to act as a long-term source of these chemicals though gradual migration. Locally, however, and more important from an ecotoxicological perspective, PBDE migration may be significantly enhanced when physically and chemically weathered microplastics are exposed to the oily digestive fluids conditions of fish and seabirds.
Mostrar más [+] Menos [-]Habitat-dependent trophic transfer of legacy and emerging halogenated flame retardants in estuarine and coastal food webs near a source region
2022
Li, Yanan | Zhang, Jian | Ji, Chenglong | Xiao, Pei | Tang, Jianhui
With the phase-out of legacy halogenated flame retardants (HFRs), such as decabromodiphenyl ether (BDE-209), emerging ones, such as decabromodiphenyl ethane (DBDPE), are being widely produced. We conducted field campaigns to assess the trophic transfer of legacy and emerging HFRs in estuarine and coastal food webs of Laizhou Bay, which are located near the largest HFR manufacturing base in China. Seawater, sediment, plankton, invertebrates, and fish were collected from both sites. BDE-209 was the predominant compound in the estuary, whereas DBDPE was the main contributor to HFRs in the bay, followed by BDE-209. Invertebrates, especially bivalves and sea cucumbers, showed higher levels of BDE-209 and DBDPE than fish. The HFR levels in the organisms of the two coastal zones were comparable to each other, although their concentrations in the estuarine water were one order of magnitude higher than those in the bay. The HFR profiles in benthic organisms were similar to those in the sediments, indicating that the bioaccumulation of HFRs in coastal food webs depended on the habitat. The ΣHFR concentrations followed the order filter-feeding > carnivorous for invertebrates, and demersal non-migratory fish showed higher HFR levels than oceanodromous fish. The trophic magnification factors estimated for BDE-209, dechlorane plus, and DBDPE were lower than 1, suggesting biodilution potential in both food webs, whereas several PBDE congeners exhibited biomagnification capacity. Feeding habits, habitats, hydrophobicity, bioavailability, and metabolism may be the main factors impacting the bioaccumulation of HFRs in organisms in estuarine–coastal ecosystems of northern China.
Mostrar más [+] Menos [-]Organophosphate pesticides in South African eutrophic estuaries: Spatial distribution, seasonal variation, and ecological risk assessment
2022
Olisah, Chijioke | Rubidge, Gletwyn | Human, Lucienne R.D. | Adams, Janine B.
The seasonal variation, spatial distribution, and ecological risks of thirteen organophosphate pesticides (OPPs) were studied in the Sundays and Swartkops estuaries in South Africa. Ten pesticides were detected in surface water samples from both estuaries, while all OPPs were detected in sediments. The highest concentration of OPPs (18.8 μg pyrazophos L⁻¹) was detected in surface water samples from Swartkops Estuary, while 48.7 μg phosalone kg⁻¹ dw was the highest in sediments collected from Sundays Estuary. There was no clear seasonal pattern in OPPs occurrence in surface water from both systems. However, their occurrence in sediments was in the following order: winter > autumn > summer > spring, perhaps indicating major pesticide input in the winter seasons. Results from ecological risk assessment showed that pyraclofos and chlorpyrifos (CHL) in surface water from both systems are respectively likely to cause high acute and chronic toxicity to fish (risk quotient – RQ > 1). For sediments of both estuaries, the highest acute and chronic RQs for fish were calculated for isazophos and CHL respectively. The majority of the detected OPPs in sediments posed potential high risks to Daphnia magna from both systems. These results suggest that these aquatic organisms (fish, and Daphnia), if present in the studied estuaries, can develop certain forms of abnormalities due to OPP exposure. To this end, proper measures should be taken to reduce OPP input into the estuarine systems.
Mostrar más [+] Menos [-]Microbial metabolism changes molecular compositions of riverine dissolved organic matter as regulated by temperature
2022
Tang, Gang | Zheng, Xing | Hu, Shiwen | Li, Binrui | Chen, Shuling | Liu, Tong | Zhang, Bowei | Liu, Chongxuan
This study investigated the control of dissolved organic matter (DOM) molecular compositions by microbial community shifts under temperature regulation (range from 5 to 35 °C), using riverine DOM and in situ microorganisms as examples. The functioning of different microbial metabolisms, including the utilization and generation processes, was comprehensively analyzed. Though the overall quantity of DOM was less temperature-affected, more molecules were identified at moderate temperatures (e.g., 15 and 25 °C) and their accumulated mass peak intensities increased with the temperature. The results were ascribed to 1) the microbial production of macromolecular (m/z > 600) CHO, CHON, and CHONS species was stimulated at higher temperatures; 2) the microorganisms consumed more DOM molecules at both higher and lower temperatures; and 3) the simultaneously decreased utilization and increased generation of recalcitrant CHO and CHON molecules with m/z < 600 at higher temperatures. The strong correlations among the temperature, community structures, and DOM chemodiversity suggested that temperature promoted the community evenness to increase the DOM generation. In addition, the higher temperature decreased the abundance of microorganisms that utilized more recalcitrant molecules and produced fewer new molecules (e.g., Proteobacteria, Acinetobacter, and Erythrobacter) while increased others that functioned the opposite (e.g., Verrucomicrobia, Bacteroidetes, and Flavobacterium) to increase the DOM production. The constructed temperature-community-DOM chemistry relationship deepened the molecular-level understanding of DOM variations and provided implications for the warming future.
Mostrar más [+] Menos [-]