Refinar búsqueda
Resultados 1551-1560 de 7,921
Bacillus circulans MTCC 7906 aided facile development of bioconjugate nano-silica alkaline protease formulation with superlative dehairing potential
2021
Joshi, Nishu | Kocher, Gurvinder Singh | Kalia, Anu | Banga, Harmanjit Singh
The tannery industries utilize environmentally hazardous chemicals to achieve dehairing of animal hides, which causes enormous waterbed pollution & high TDS load. Alkaline protease enzyme for dehairing can be an effective solution to resolve the environmental problems of the tannery industry waste. However, stable, cost-efficient and eco-benign formulations of alkaline protease need to be developed for commercial applications in the tannery industry. This works aimed at development of a nano-formulation of the enzyme alkaline protease (AKP) as a bioconjugate nano silica-alkaline protease enzyme (BC–SiNP-AKP). This work reports one pot green synthesis of the BC-SiNP-AKP bionanoconjugate complex which included both biotemplating and immobilization of the AKP on to the synthesized silica nanoparticles from cell-free extracts of Bacillus circulans grown in potato peel based medium. Among the cell free crude, acetone concentrated and purified sols of the enzyme AKP, acetone precipitated enzyme sol was found to be best for the biological SiNP synthesis and formation of BC-SiNP-AKP conjugate. The BC-SiNP-AKP had size ranging from 100 to 200 nm with crystalline morphologies varying from spherical, tubular to laminated crystallites. The developed bioconjugate formulation displayed 1.7-fold increase in the enzyme activity post nano-conjugation with superlative dehairing potential on goat skin. The optimized parameters for dehairing were found to be as temperature 37 °C for 24 h of incubation and with enzyme to buffer ratio (2: 50 mL). Thereafter, the dehaired skin was assessed for its histopathological effects, which were found to be safe without any deteriorative changes. The developed formulation is environmentally congenial for its use as depilating agent for animal hides in terms of being green, single pot and cost effective synthesis.
Mostrar más [+] Menos [-]Artificial light pollution inhibits plant phenology advance induced by climate warming
2021
Lian, Xihong | Jiao, Limin | Zhong, Jing | Jia, Qiqi | Liu, Jiafeng | Liu, Zejin
Natural photic regime has been drastically altered by the artificial night sky luminance. Despite evidence of sufficient light brightness inducing plant physiology and affecting phenology, generalization regarding effects of light pollution on plant phenology across species and locations is less clear. Meanwhile, the relative contributions and joint effects of artificial light pollution and climate change or other anthropic stressors still remain unknown. To fill this knowledge gap, we utilized in situ plant phenological observations of seven tree species during 1991–2015 in Europe, night-time light dataset and gridded temperature dataset to investigate the impacts of the artificial light pollution on spatial-temporal shifts of plant phenological phases under climatic warming. We found 70% of the observation sites were exposed to increased light pollution during 1992–2015. Among them, plant phenological phases substantially delayed at 12–39% observation sites of leaf-out, and 6–53% of flowering. We also found plant species appeared to be more sensitive to artificial light pollution, and phenology advancement was hindered more prominently and even delay phenomenon exhibited when the color level showed stronger sky brightness. Linear mixed models indicate that although temperature plays a dominant role in shifts of plant phenological phases at the spatial scale, the inhibitory effect of artificial light pollution is evident considering the interactions. To our knowledge, this study is the first to quantitatively establish the relationship between artificial light pollution and plant phenology across species and locations. Meanwhile, these findings provide a new insight into the ecological responses of plant phenology to the potential but poorly understood environmental stressors under this warmer world and call for light pollution to be accorded the equal status as other global change phenomena.
Mostrar más [+] Menos [-]The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand
2021
Boongla, Yaowatat | Chanonmuang, Phuvasa | Hata, Mitsuhiko | Furuuchi, Masami | Phairuang, Worradorn
Atmospheric size-classified particles in sizes ranging from small to nanoparticles (PM₀.₁) are reported for Rangsit City in the Bangkok Metropolitan Region (BMR) of Thailand, for October 2019 (wet season) and January–February 2020 (dry season). The sampling involved the use of a PM₀.₁ cascade air sampler to determine the mass concentration. The PMs consisted of six stages including TSP–PM₁₀, PM₂.₅₋₁₀, PM₁.₀₋₂.₅, PM₀.₅₋₁.₀, PM₀.₅₋₁.₀ and PM₀.₁. Elemental carbon (EC) and organic carbon (OC) were evaluated by a carbon analyzer following the IMPROVE_TOR protocol. The average PM₀.₁ mass concentrations were found to be 13.47 ± 0.79 (wet season) and 18.88 ± 3.99 (dry season) μg/m³, respectively. The average OC/EC ratio for the rainy season was lower than that in the dry season. The char-EC/soot-EC ratios were consistently below 1 for the PM₀.₁ fraction in both seasons indicating that vehicular traffic appeared to be the main emission source. However, the influence of open biomass burning on fine and coarse PM particles on local air pollution was found to be an important issue during the wet season. In addition, long-range transport from other countries may also contribute to the carbon content in the Bangkok Metropolitan Region (BMR) atmosphere during the dry season. The higher secondary organic carbon to organic carbon (SOC/OC) ratio in the dry season is indicative of the contribution of secondary sources to the formation of PM, especially finer particles. A strong correlation between OC and EC in nanoparticles was found, indicating that they are derived from sources of constant emission, likely the diesel engines. Conversely, the OC and EC correlation for other size-specific PMs decreased during the dry season, indicating that these emission sources were more varied.
Mostrar más [+] Menos [-]Water contamination with atrazine: is nitric oxide able to improve Pistia stratiotes phytoremediation capacity?
2021
Vieira, Lorena A.J. | Alves, Rauander D.F.B. | Menezes-Silva, Paulo E. | Mendonça, Maria A.C. | Silva, Maria L.F. | Silva, Maria C.A.P. | Sousa, Leticia F. | Loram-Lourenço, Lucas | Alves da Silva, Adinan | Costa, Alan Carlos | Silva, Fabiano G. | Farnese, Fernanda S.
Atrazine is an herbicide commonly used in several countries. Due to its long half-life, associated with its use in large scales, atrazine residues remain as environmental pollutants in water bodies. Phytoremediation is often pointed out as an interesting approach to remove atrazine from the aquatic environment, but its practical application is limited by the high toxicity of this herbicide. Here, we characterize the damages triggered by atrazine in Pistia stratiotes, evaluating the role of nitric oxide (NO), a cell-signaling molecule, in increasing the tolerance to the pollutant and the phytoremediation potential of this species. Pistia stratiotes plants were exposed to four treatments: Control; Sodium nitroprusside (SNP) (0.05 mg L⁻¹); Atrazine (ATZ) (150 μg L⁻¹) and ATZ + SNP. The plants remained under those conditions for 24 h for biochemical and physiological analysis and 3 days for the evaluation of relative growth rate. The presence of atrazine in plant cells triggered a series of biochemical and physiological damages, such as the increase in the generation of reactive oxygen species, damages to cell membranes, photosynthesis impairment, and negative carbon balance. Despite this, the plants maintained greater growth rates than other aquatic macrophytes exposed to atrazine and showed high bioconcentration and translocation factors. The addition of SNP, a NO donor, decreased the herbicide toxicity, with an increase of over 60% in the IC₅₀ value (Inhibitor Concentration). Indeed, the NO signaling action was able to increase the tolerance of plants to atrazine, which resulted in increments in pollutant uptake and translocation, with the maintenance of overall cell (e.g. membranes) and organs (root system) structure, and the functioning of central physiological processes (e.g. photosynthesis). These factors allowed for more quickly and efficient removal of the pollutant from the environment, reducing costs, and increasing the viability of the phytoremediation process.
Mostrar más [+] Menos [-]Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives
2021
Zhang, Wenping | Pang, Shimei | Lin, Ziqiu | Mishra, Sandhya | Bhatt, Pankaj | Chen, Shaohua
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C–F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.
Mostrar más [+] Menos [-]Particulate matter exposure at a densely populated urban traffic intersection and crosswalk
2021
He, Hong-di | Gao, H Oliver
Exposure to elevated particulate matter (PM) pollution is of great concern to both the general public and air quality management agencies. At urban traffic intersections, for example, pedestrians are often at a higher risk of exposure to near-source PM pollution from traffic while waiting on the roadside or while walking in the crosswalk. This study offers an in-depth investigation of pedestrian exposure to PM pollution at an urban traffic intersection. Fixed-site measurements near an urban intersection were conducted to examine the variations in particles of various sizes through traffic signal cycles. This process aids in the identification of major PM dispersion patterns on the roadside. In addition, mobile measurements of pedestrian exposure to PM were conducted across six time intervals that correspond to different segments of a pedestrian’s journey when passing through the intersection. Measurement results are used to estimate and compare the cumulative deposited doses of PM by size categories and journey segments for pedestrians at an intersection. Furthermore, comparisons of pedestrian exposure to PM on a sunny day and a cloudy day were analyzed. The results indicate the importance of reducing PM pollution at intersections and provide policymakers with a foundation for possible measures to reduce pedestrian PM exposure at urban traffic intersections.
Mostrar más [+] Menos [-]Subacute exposure to lead promotes disruption in the thyroid gland function in male and female rats
2021
de Lima Junior, Niedson Correia | Camilo, Juliana Franco | do Carmo, Pâmella Rodrigues | de Andrade, Marcelle Novaes | Braz, Bernardo Ferreira | Santelli, Ricardo Erthal | de Brito Gitirana, Lycia | Ferreira, Andrea Claudia Freitas | de Carvalho, Denise Pires | Miranda-Alves, Leandro | Dias, Glaecir Roseni Mundstock
Exposure to heavy metals, such as lead, is a global public health problem. Lead has a long historic relation to several adverse health conditions and was recently classified as an endocrine disruptor. The aim of this study was to investigate the effects of subacute exposure to lead on the thyroid gland function. Adult male and female Wistar rats received a lead acetate solution containing 10 or 25 mg/kg, by gavage, three times a week, for 14 days. One week later, behavioral testing showed no alterations in anxiety and motor-exploratory parameters, as evaluated by Open-Field and Plus-Maze Tests, but impairment in learning and memory was found in the male 25 mg/kg lead-treated group and in both female lead-treated groups, as evaluated by the Inhibitory Avoidance Test. After one week, serum levels of tT3 were reduced in the 25 mg/kg female group and in the 10 mg∕ kg male group. However, tT4 levels were increased in the 25 mg/kg male group and in both female treated groups. TSH levels did not change and lead serum levels were undetectable. Morphologic alterations were observed in the thyroid gland, including abnormal thyroid parenchyma follicles of different sizes, epithelial stratification and vacuolization of follicular cells, decrease in colloid eosinophilia and vascular congestion, accompanied by morphometric alterations. An increase in collagen deposition was also observed. No differences were observed in TPO activity or protein expression, H₂O₂ generation by NADPH oxidases or hepatic D1 mRNA expression. However, thyroid NIS protein expression was considerably decreased in the male and female lead-treated groups, while TSHr expression was decreased in the 25 mg/kg female lead-treated group. These findings demonstrated that subacute exposure to lead acetate disrupts thyroid gland function in both sexes, leading to morphophysiological impairment and to changes in learning and memory abilities.
Mostrar más [+] Menos [-]Microplastic ingestion in reared aquaculture fish: Biological responses to low-density polyethylene controlled diets in Sparus aurata
2021
Alomar, Carme | Sanz-Martín, Marina | Compa, Montserrat | Rios-Fuster, Beatriz | Álvarez, Elvira | Ripolles, Vincent | Valencia, José María | Deudero, Salud
During the last years, ingestion of microplastics (MPs) has been quantified in marine species both with an ecological and commercial interest at sea and under experimental conditions, highlighting the importance to assess MP ingestion in commercially and aquaculture important species such as gilthead seabream (Sparus aurata) fish. In order to study the ingestion of MPs in a commercially valuable species, gilthead seabreams were exposed to an enriched diet with virgin and weathered low-density polyethylene (LDPE) pellets for three months followed by a detoxification period of one month of no exposure to MP enriched diets. Our results indicate that MP ingestion in these fishes increased with exposure time, and differences were found between treatments, showing the highest ingestion values after three months of exposure to MP enriched diets and in the weathered treatment. However, after one month of detoxification, no MPs were found in the gastrointestinal tracts of fish, reflecting no long-term retention of MPs in Sparus aurata digestive system. According to results from this study, exposure of fish to MP enriched diets does not affect fish size neither the Fulton’s condition index as both parameters increased with time in all treatments (control, virgin and weathered). Both carbon and nitrogen isotopic signatures decreased with fish size in all treatments which could be related to an increase of nitrogen deposition efficiency in fish muscle with a high protein assimilation during the first months of Sparus aurata.
Mostrar más [+] Menos [-]Source, fate and budget of Dechlorane Plus (DP) in a typical semi-closed sea, China
2021
Zhen, Xiaomei | Li, Yanfang | Wang, Xinming | Liu, Lin | Li, Yanan | Tian, Chongguo | Pan, Xiaohui | Fang, Yin | Tang, Jianhui
Dechlorane Plus (DP), which has severe effects on marine ecosystems, has been proposed for listing under the Stockholm Convention as a persistent organic pollutant (POPs). This study was the first comprehensive investigation of the concentration and fate of DP in the Bohai Sea (BS) based on determination of river estuary water, river estuary sediment, surface seawater, bottom seawater, and sea sediments samples. The highest water DP levels were found in river estuary in Tianjin in North China due to the huge usage of DP in recent years, and spatial distribution analysis indicates it was mainly affected by regional high urbanization and emission of E-waste. The spatial distribution of DP in the BS was mainly affected by a combination of coastal hydrodynamics and land anthropogenic activities. On the basis of multi-box mass balance, simulations of DP in seawater showed an increase from 2014 to 2025, before leveling off at 184 pg L ⁻¹ by a constant DP input to the BS. Riverine discharge almost contributed to the total input (∼99%) and dominated the DP levels in the BS. Degradation of DP accounted for 55.3% and 78.1% of total DP output in seawater and sediment, respectively, indicating that degradation mainly affected decline of DP in the environment.
Mostrar más [+] Menos [-]Effects of exposure to prothioconazole and its metabolite prothioconazole-desthio on oxidative stress and metabolic profiles of liver and kidney tissues in male mice
2021
Meng, Zhiyuan | Tian, Sinuo | Sun, Wei | Liu, Li | Yan, Sen | Huang, Shiran | Zhu, Wentao | Zhou, Zhiqiang
Prothioconazole (PTC), a popular agricultural fungicide, and its main metabolite prothioconazole-desthio (PTCd) are receiving great attention due to their toxicological effects in the non-target organisms. This study investigated their dosage-dependent (1 and 5 mg/kg BW/day) toxicological effects on oxidative stress and metabolic profiles of liver and kidney tissues using male mice. PTC and PTCd significantly inhibited the growth phenotype including body weights gain, liver and kidney indices. Furthermore, these effects were deeply investigated using the biomarkers of oxidative stress, and metabolomics. Notably, these effects were dose and tissue-dependent. Specifically, the more serious impacts involving oxidative stress and metabolic disorders were observed in the high concentration treatment groups. Also, the liver tissue was more severely affected than the kidney tissue. Lastly, the change in oxidative stress biomarkers and metabolomics profile revealed that PTCd induced more severe toxic effects than the parent compound PTC. In brief, these results indicate that exposure to PTC and PTCd could cause potential health risks in mammals.
Mostrar más [+] Menos [-]