Refinar búsqueda
Resultados 1551-1560 de 7,995
Third-hand smoke exposure is associated with abnormal serum melatonin level via hypomethylation of CYP1A2 promoter: Evidence from human and animal studies Texto completo
2021
Jiang, Wenbo | Wu, Huanyu | Yu, Xinyang | Wang, Yu | Gu, Wenbo | Wei, Wei | Li, Bai | Jiang, XiTao | Wang, Yue | Hou, Wanying | Dong, Qiuying | Yan, Xuemin | Li, Ying | Sun, Changhao | Han, Tianshu
This study aimed to examine whether and how third-hand smoke (THS) exposure would influence serum melatonin level. 1083 participants with or without exposure to THS were enrolled. Serum ROS, SOD, GSH-Px, and melatonin were measured by ELISA. Methylation microarrays detection and WGCNA were performed to identify hub methylated-sites. The methylation levels of hub-sites were validated in addtional samples. Moreover, mice were exposed to THS for 6 months mimicking exposure of human and the serum, liver, and pineal were collected. Oxidative stress-related indicators in serum, pineal, and liver were measured by ELISA. The expressions of mRNA and protein and methylation levels of hub-gene discovered in human data were further explored by RT-PCR, western-blot, and TBS. The results showed the participants exposed to THS had lower melatonin-level. 820 differentially methylated sites associated with THS were identified. And the hub-site located on the CYP1A2 promoter was identified, which mediated the association between THS and decreased melatonin-level. Decreased peak of serum melatonin, increased ROS and reduced SOD and GSH-Px in pineal and liver, and elevated CYP1A2 expression in liver was also found in the THS-exposed mice. Hypo-methylation of 7 CPG sites on the CYP1A2 promoter was identified, which accelerated the catabolism of melatonin. Overall, THS exposure is associated with abnormal melatonin catabolism through hypo-methylation of CYP1A2-promoter.
Mostrar más [+] Menos [-]Gradual effects of gradient concentrations of polystyrene nanoplastics on metabolic processes of the razor clams Texto completo
2021
Jiang, Qichen | Zhang, Wenyi
With the widespread occurrence and accumulation of plastic waste in the world, plastic pollution has become a serious threat to ecosystem and ecological security, especially to estuarine and coastal areas. Understanding the impacts of changing nanoplastics concentrations on aquatic organisms living in these areas is essential for revealing the ecological effects caused by plastic pollution. In the present study, we revealed the effects of exposure to gradient concentrations (0.005, 0.05, 0.5 and 50 mg/L) of 75 nm polystyrene nanoplastics (PS-NPs) for 48 h on metabolic processes in muscle tissue of a bivalve, the razor clam Sinonovacula constricta, via metabolomic and transcriptomic analysis. Our results showed that PS-NPs caused dose-dependent adverse effects on energy reserves, membrane lipid metabolism, purine metabolism and lysosomal hydrolases. Exposure to PS-NPs reduced energy reserves, especially lipids. Membrane lipid metabolism was sensitive to PS-NPs with contents of phosphocholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS) increasing and degradation being inhibited in all concentrations. High concentrations of PS-NPs altered the purine metabolism via increasing contents of guanosine triphosphate (GTP) and adenine, which may be needed for DNA repair, and consuming inosine and hypoxanthine. During exposure to low concentrations of PS-NPs, lysosomal hydrolases in S. constricta, especially cathepsins, were inhibited while this influence was improved transitorily in 5 mg/L of PS-NPs. These adverse effects together impacted energy metabolism in S. constricta and disturbed energy homeostasis, which was manifested by the low levels of acetyl-CoA in high concentrations of PS-NPs. Overall, our results revealed the effects of acute exposure to gradient concentrations of PS-NPs on S. constricta, especially its metabolic process, and provide perspectives for understanding the toxicity of dynamic plastic pollution to coastal organisms and ecosystem.
Mostrar más [+] Menos [-]Natural attenuation mechanism of hexavalent chromium in a wetland: Zoning characteristics of abiotic and biotic effects Texto completo
2021
Jiang, Kaidi | Zhang, Jia | Deng, Zhihui | Barnie, Samuel | Chang, Jingjie | Zou, Yawen | Guan, Xiangyu | Liu, Fei | Chen, Honghan
Natural wetland has great retention effect on Cr(VI) migration due to its abiotic and biotic reduction abilities, however, the zoning characteristics of dominating reduction mechanism along Cr(VI) pollution plume in wetland is still unclear. In this study, a Cr(VI) contaminated natural wetland was explored to investigate the distributions of Cr and Fe in groundwater and sediment, and their relationship with microorganisms according to metagenomics, aiming to reveal the natural attenuation mechanism of Cr(VI) from the perspective of zoning characteristics of abiotic and biotic effects. The wetland was divided into contaminated zone, transition zone and uncontaminated zone according to the contamination states of groundwater and sediment. At the upstream of contaminated zone, Cr(VI) concentration in groundwater was as high as 26.7 mg L⁻¹, which has significant inhibition effect on microbial growth, and thus chemical reduction of Cr(VI) by natural organic matters (NOMs) dominated in this area, leading to the increasing of H/C and O/C ratios of NOMs because of the oxidation of aromatic moieties. At the downstream of contaminated zone, Cr(VI) concentration in groundwater decreased to less than 4.46 mg L⁻¹ resulting from dilution and attenuation, but the microbial community was altered substantially, chromate resistant bacteria with ChrA, ChrR, NemA and AzoR genes were enriched, such as Sphingomonas, Mesorhizobium and Comamonadaceae, and thus the direct microbial reduction of Cr(VI) dominated in this area. While at the transition zone, which is located at the front edge of the pollution plume, Cr(VI) could only reached in this area intermittently, and the microbial community remained similar to that of the uncontaminated zone, dominated by Chloroflexi and Acidobateria phylum with dissimilatory ferric iron reduction capacity, and thus Cr(VI) was indirectly reduced by Fe²⁺ intermediately in this area.
Mostrar más [+] Menos [-]Potamopyrgus antipodarum has the potential to detect effects from various land use activities on a freshwater ecosystem Texto completo
2021
Subba, Maita | Keough, Michael J. | Kellar, Claudette | Roth, Sara Long | Miranda, Ana | Pettigrove, Vincent J.
Identifying risks to ecosystems from contaminants needs a diversity of bioindicators, to understand the effects of these contaminants on a range of taxa. Molluscs are an ideal bioindicator because they are one of the largest phyla with extremely high ecological and economic importance. The aim of this study was to evaluate if laboratory bred Potamopyrgus antipodarum has the potential to show the impact of contaminants from various land use activities and degree of pollution on a freshwater ecosystem. We assessed the impact of contaminants arising from runoff and direct discharges in Merri Creek by measuring organism level responses (survival, growth, and reproduction), and sub-organism level responses (glutathione S-transferase (GST) activity, lipid peroxidation (LPO) activity and catalase (CAT) activity) in snails after 28-d of deployment at nine sites in Merri Creek and one site in Cardinia Creek. In Merri Creek, the top two sites were reference sites (with low impact from human activities), while the rest were impact sites (impacted by various anthropogenic land uses). Cardinia Creek (an additional reference site) had lower human activity. High concentrations of heavy metals, nutrients, and/or synthetic pyrethroids (bifenthrin) dominated these sites, which are likely to have contributed towards the negative responses observed in the snails. There was little influence from environmental conditions and site location on the endpoints because we found a similar response at an additional reference site compared to the reference sites in Merri Creek. At the organism level, reproduction increased and/or reduced, while CAT was affected at the sub-organism level. Potamopyrgus antipodarum has the potential to be a sensitive bioindicator for Australian conditions because the snails responded to varying concentrations of contaminants across different land use activities and showed similar sensitivity to P. antipodarum found in other regions of the globe and other bioindicators.
Mostrar más [+] Menos [-]Heavy ozone pollution episodes in urban Beijing during the early summertime from 2014 to 2017: Implications for control strategy Texto completo
2021
Zhang, Xin | Li, Hong | Wang, Xuezhong | Zhang, Yujie | Bi, Fang | Wu, Zhenhai | Liu, Yuhong | Zhang, Hao | Gao, Rui | Xue, Likun | Zhang, Qingzhu | Chen, Yizhen | Chai, Fahe | Wang, Wenxing
Ground-level ozone (O₃) has become the principal air pollutant in Beijing during recent summers. In this context, an investigation of ambient concentrations and variation characteristics of O₃ and its precursors in May and June from 2014 to 2017 in a typical urban area of Beijing was carried out, and the formation sensitivity and different causes of heavy O₃ pollution (HOP, daily maximum 8-h O₃ (MDA8h O₃)>124 ppbv) were analyzed. The results showed that the monthly assessment values of the O₃ concentrations (the 90ᵗʰ percentile MDA8h O₃ within one month) were highest in May or June from 2014 to 2017, and the values presented an overall increasing trend. During this period, the number of O₃ pollution days (MDA8h O₃ > 75 ppbv) also showed an increasing trend. During the HOP episodes, the concentrations of volatile organic compounds (VOCs), nitrogen oxides (NOX), and carbon monoxide (CO) were higher than their respective mean values in May and June, and the meteorological conditions were more conducive to atmospheric photochemical reactions. The HOP episodes were mainly caused by local photochemical formation. From 2014 to 2017, O₃ formation during the HOP episodes shifted from VOC and NOX mixed-limited to VOC-limited conditions, and O₃ formation was most sensitive to anthropogenic VOCs. Six categories of VOC sources were identified, among which vehicular exhaust contributed the most to anthropogenic VOCs. The VOC concentrations and OFPs of anthropogenic sources have decreased significantly in recent years, indicating that VOC control measures have been effective in Beijing. Nevertheless, NOX concentrations did not show an evident decreasing trend in the same period. Therefore, more attention should be devoted to O₃ pollution control in May and June; control measure adjustments are needed according to the changes in O₃ precursors, and coordinated control of VOCs and NOX should be strengthened in long-term planning.
Mostrar más [+] Menos [-]Canidin-3-glucoside prevents nano-plastics induced toxicity via activating autophagy and promoting discharge Texto completo
2021
Chen, Wen | Chu, Qiang | Ye, Xiang | Sun, Yuhao | Liu, Yangyang | Jia, Ruoyi | Li, Yonglu | Tu, Pengcheng | Pan, Jijiong | Yu, Ting | Chen, Chuan | Zheng, Xiaodong
Increasing attention has been brought to microplastics pollution recently, while emerging evidences indicate that nano-plastics degraded from microplastics are more of research significance owing to stronger toxicity. However, there is little study focused on the prevention of nano-plastics induced toxicity until now. Canidin-3-glucoside (C3G), a natural anthocyanin proved to possess multiple functions like antioxidant and intestinal tissue protection. Thus, we proposed whether C3G could act as a molecular weapon against nano-plastics induced toxicity. In Caco2 cell and Caenorhabditis elegans (C. elegans) models, we found that polystyrene (PS) nano-plastics exposure resulted in physiological toxicity and oxidative damage, which could be restored by C3G. More significantly in Caco2 cells, we observed that autophagy was activated via Sirt1-Foxo1 signaling pathway to attenuate PS induced toxicity after C3G intervention and further verified by adding autophagy inhibitor 3-Methyladenine (3-MA). Meanwhile, PS co-localization with lysosomes was observed, indicating the encapsulation and degradation of PS. In C. elegans, by detecting LGG-1/LC3 expression in GFP-targeted LGG-1 report gene (LGG-1:GFP) labeled transgenic DA2123 strain, the co-localization of LGG-1:GFP with PS was found as well, means that autophagy is involved in C3G’s beneficial effects. Furthermore, we were surprised to find that C3G could promote the discharge of PS from N2 nematodes, which reduces PS toxicity more directly.
Mostrar más [+] Menos [-]Multiple metal exposure and obesity: A prospective cohort study of adults living along the Yangtze River, China Texto completo
2021
Zhong, Qi | Qin, Qi-rong | Yang, Wan-jun | He, Jia-liu | Zhu, Jin-liang | Zhu, Zhen-yu | Huang, Fen
Association between long-term exposure to multiple metals and obesity remains inconclusive, and prospective evidence on the region along the Yangtze River was limited. Thus, our study aimed to examine the association of multiple metal exposure and obesity. We measured baseline urine levels of 22 metals of 982 adults living along the Yangtze River, incidence of obesity was calculated from body mass index (BMI) and waist circumference (WC) measured at follow-up survey. Cox proportional hazards models were used to examine the hazard ratios (HR) and 95% confidence interval (CI) for the association between urinary metals and obesity, and the mixing effect of metals on obesity was estimated by using quantile g-computation. In multiple-metal models, arsenic was significantly associated with BMI/obesity, with the HR in the highest quartiles of 0.33 (95% CI: 0.16, 0.69; p-trend = 0.004). The HRs for WC/obesity of arsenic and molybdenum were 0.49 (95% CI: 0.32, 0.75 for the fourth vs. first quartile; p-trend = 0.002) and 1.83 (95% CI: 1.25, 2.70; p-trend = 0.001), respectively. Quantile g-computation mixtures approach showed a significantly negative joint effect of multiple metals on WC/obesity, with the HR of 0.26 (95% CI: 0.14, 0.47; p < 0.001) when increasing all seventeen metals by one quartile. Our study suggests that all seventeen metal mixed exposure may be negatively associated with obesity. Further cohort studies are needed to confirm these findings and clarify the underlying biological mechanisms.
Mostrar más [+] Menos [-]Benthic prokaryotic microbial community assembly and biogeochemical potentials in E. coli - Stressed aquatic ecosystems during plant decomposition Texto completo
2021
Gu, Li | Wu, Jian-yi | Hua, Zu-lin
Benthic microbes play a crucial role in maintaining the biogeochemical balance of aquatic ecosystems especially the material cycling during plant decomposition. However, those systems in agricultural area are always threatened by agricultural run-off containing a mass of typical pathogenic invader- Escherichia coli. It is therefore vital to clarify the turnover, assembly, and geochemical functions of the E. coli invaded benthic prokaryotic microbial community during plant decomposition. During the decaying process, the key filtering factors of benthic community assembly were NH₄⁺-N (P < 0.001), NO₂⁻-N (P < 0.01), and Organic-N (P < 0.05). The E. coli colonized significantly in sediments (P < 0.001) and drove the turnover of the bacterial community (P = 0.001), which enhanced archaeal dominance in the benthic microbial network. E. coli also triggered niche structural variations. The biomass (%) of benthic nutrient cycling genera including Dechloromonas, Pseudomonas, Bacteroides, Candidatus_Methanofastidiosum, and Desulfomicrobium (P < 0.05) was altered by E. coli stress. The structural equation model illustrated that E. coli critically affected the benthic microbial geochemical functions in multiple pathways (P < 0.05). Our results provide new insights into benthic prokaryotic microbial community assembly and nutrient cycling and management under pollution stress.
Mostrar más [+] Menos [-]Durable super-hydrophobic PDMS@SiO2@WS2 sponge for efficient oil/water separation in complex marine environment Texto completo
2021
Zhai, Guanzhong | Qi, Lixue | He, Wang | Dai, Jiajun | Xu, Yan | Zheng, Yanmei | Huang, Jiale | Sun, Daohua
The robust and eco-friendly super-hydrophobic sponge with remarkable performances has been potential adsorption material for the treatment of offshore oil spills. In this work, the durable PDMS@SiO₂@WS₂ sponge was fabricated via a green and facile one-step dipping method. The mixed tungsten disulfide (WS₂) microparticles and hydrophobic SiO₂ nanoparticles were immobilized on the sponge by non-toxic polydimethylsiloxane (PDMS) glue tier, which featured the hierarchical structure and extreme water repellency with the water contact angle of 158.8 ± 1.4°. The obtained PDMS@SiO₂@WS₂ sponge exhibits high oil adsorption capacity with 12–112 times of its own weight, and oil/water selectivity with separation efficiency over 99.85%. Notably, when subjected to the complex marine environment including high temperature, corrosive condition, insolation, and strong wind and waves, the modified sponge can maintain sable super-hydrophobicity with water contact angle over 150°. Moreover, it possesses superior mechanical stability for sustainable reusability and oil recovery. The sponge fabricated by non-toxic modifiers along with its sable super-hydrophobicity in complex marine environment makes it a potential material for practical applications.
Mostrar más [+] Menos [-]Estimating hourly full-coverage PM2.5 over China based on TOA reflectance data from the Fengyun-4A satellite Texto completo
2021
Mao, Feiyue | Hong, Jia | Min, Qilong | Gong, Wei | Zang, Julin | Yin, Jianhua
It is challenging to retrieve hourly ground-level PM₂.₅ on a national scale in China due to the sparse site measurements and the limited coverage of Low Earth Orbit (LEO) satellite observations. The new geostationary meteorological satellite of China, Fengyun-4A (FY-4A), provides a unique opportunity to fill this gap. In this study, the Random Forest (RF) algorithm was applied to retrieve hourly PM₂.₅ of China directly from FY-4A Top-of-Atmosphere (TOA) reflectance data. A one-year PM₂.₅ retrieval shows a strong agreement to ground-based measurements, with the averaged R² approaching 0.92, while the RMSE was only 10.0 μg/m³. An analysis of the regional differences of the performance and the dependency on satellite Viewing Zenith Angle (VZA) show that sparse measurements, high VZA, and solar zenith angle (SZA) are the primary sources of the uncertainty. The use of the FY-4A improved 17% spatial coverage compared to the Himawari-8-based PM₂.₅ retrievals, enabling full-coverage, hourly PM₂.₅ monitoring over China, and potentially could improve PM₂.₅ predictions from air quality models after data assimilation.
Mostrar más [+] Menos [-]