Refinar búsqueda
Resultados 1551-1560 de 7,990
Microbial community analysis of biopiles in Antarctica provides evidence of successful hydrocarbon biodegradation and initial soil ecosystem recovery
2021
van Dorst, Josie | Wilkins, Daniel | Crane, Sally | Montgomery, Kate | Zhang, Eden Quxian | Spedding, Tim | Hince, Greg | Ferrari, Belinda
Microorganisms comprise the bulk of biodiversity and biomass in Antarctic terrestrial ecosystems. To effectively protect and manage the Antarctic environment from anthropogenic impacts including contamination, the response and recovery of microbial communities should be included in soil remediation efficacy and environmental risk assessments. This is the first investigation into the microbial dynamics associated with large scale bioremediation of hydrocarbon contaminated soil in Antarctica. Over five years of active management, two significant shifts in the microbial community were observed. The initial shift at 12–24 months was significantly correlated with the highest hydrocarbon degradation rates, increased microbial loads, and significant increases in alkB gene abundances. ANCOM analysis identified bacterial genera most likely responsible for the bulk of degradation including Alkanindiges, Arthrobacter, Dietzia and Rhodococcus. The second microbial community shift occurring from 36 to 60 months was associated with further reductions in hydrocarbons and a recovery of amoA nitrification genes, but also increasing pH, accumulation of nitrite and a reduction of oligotrophic bacterial species. Over time, the addition of inorganic fertilisers altered the soil chemistry and led to a disruption of the nitrogen cycle, most likely decoupling ammonia oxidisers from nitrite oxidisers, resulting in nitrite accumulation. The results from this study provide key insights to the long-term management of hydrocarbon bioremediation in Antarctic soils.
Mostrar más [+] Menos [-]Effect of short-term ambient PM2.5 exposure on fasting blood glucose levels: A longitudinal study among 47,471 people in eastern China
2021
Zhan, Mengyao | Li, Zhongqi | Li, Xiaona | Tao, Bilin | Zhang, Qun | Wang, Jianming
As a common health indicator in physical examinations, fasting blood glucose (FBG) level measurements are widely applied as a diagnostic method for diabetes mellitus. Uncertain conclusions remained regarding the relationship between PM₂.₅ exposure and FBG levels. We enrolled 47,471 subjects who participated in annual physical examinations between 2017 and 2019. We collected their general characteristics and FBG levels, and environmental factors simultaneously. We applied the generalized additive model to evaluate the impact of short-term outdoor PM₂.₅ exposure on FBG levels. Among the entire population, the single-pollutant models showed that a 10 μg/m³ increase in PM₂.₅ significantly contributed to 0.0030, 0.0233, and 0.0325 mmol/L increases in FBG at lag 0–7 days, lag 0–21 days, and lag 0–28 days, respectively. Accordingly, in multipollutant models, when PM₂.₅ increased by 10 μg/m³, there was an elevation of 0.0361, 0.0315, 0.0357, and 0.0387 mmol/L in FBG for 8-day, 15-day, 22-day, and 29-day moving averages, respectively. Similarly, we observed a significant positive association between them in the normal population. Moreover, the effects could be modified by age in both the entire and normal populations. Decreasing the ambient PM₂.₅ concentrations can alleviate the elevation of FBG, which may significantly impact the burden of diabetes mellitus.
Mostrar más [+] Menos [-]Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean air actions
2021
Li, Jiayun | Gao, Wenkang | Cao, Liming | Xiao, Yao | Zhang, Yangmei | Zhao, Shuman | Liu, Zan | Liu, Zirui | Tang, Guiqian | Ji, Dongsheng | Hu, Bo | Song, Tao | He, Lingyan | Hu, Min | Wang, Yuesi
A seven-year long-term comprehensive measurement of non-refractory submicron particles (NR-PM₁) in autumn and winter in Beijing from 2012 to 2018 was conducted to evaluate the effectiveness of the clean air actions implemented by the Chinese government in September 2013 on aerosols from different sources and chemical processes. Results showed that the NR-PM₁ concentrations decreased by 44.1% in autumn and 73.2% in winter from 2012 to 2018. Sulfate showed a much larger reduction than nitrate and ammonium in both autumn (55%) and winter (86%) and that nitrate even slightly increased by 15.8% in autumn. As a result, aerosol pollution in winter gradually changed from sulfate-rich to nitrate-rich with a sudden change after 2016 and the dominant role of nitrate in autumn was also strengthened after 2016. Among primary organic aerosol (OA) types, biomass burning OA and coal combustion OA exhibited the largest decline in autumn and winter, with reductions of 87.5% and 77.3%, respectively, while hydrocarbon-like OA (HOA) exhibited the smallest decline in both autumn (24.4%) and winter (37.1%). These significant changes in aerosol compositions were highly consistent with the much faster reduction of SO₂ (75–85%) than NOx (36–59%) and were mainly due to the clean air actions rather than the impact of meteorological conditions. What’s more, the enhanced atmospheric oxidizing capacity, which was indicated by increased O₃, altered the chemical processes of oxygenated OA (OOA), especially in autumn. Both of less-oxidized OOA (LO-OOA) and more-oxidized OOA showed elevated contributions in OA by 4% in autumn. The increased oxygen-to-carbon ratios of LO-OOA in autumn (from 0.42 to 0.58) and winter (from 0.44 to 0.52) indicated the enhanced atmospheric oxidizing capacity strengthened photochemical reactions and resulted in the increased oxidation degree of LO-OOA. This study demonstrates the effectiveness of the clean air actions for air quality improvement in Beijing.
Mostrar más [+] Menos [-]Effects of hydrothermal treatments on destruction of per- and polyfluoroalkyl substances in sewage sludge
2021
Zhang, Weilan | Liang, Yanna
Sewage sludge has become a sink of per- and polyfluoroalkyl substances (PFAS) due to the ineffectiveness of PFAS removal during conventional activated sludge treatment process. In this study, we evaluated the performance of an enhanced method for PFAS extraction from sewage sludge. Significant matrix effect was observed for samples derived from untreated and hydrothermally treated sludge. Extra steps for removing potential interferences were thus needed to reduce these matrix effects and improve the accuracy of PFAS quantification. Hydrothermal treatment at 165 °C for 0.5/2 h and 250 °C for 0.5 h increased the concentration of extractable PFAAs in treated sludge. Increasing the temperature to 300 °C resulted in complete degradation of PFCAs after hydrothermal processing, but still increased the concentrations of PFSAs and PFAA precursors. The concentration increase could be due to the conversion of PFAA precursors to PFAAs and the release of PFAAs from sewage sludge during thermal treatment. Ca(OH)₂ addition to hydrothermal treatment completely removed PFAA precursors but significantly increased the extractable PFAAs, except PFHpA and PFHxS, at 165 °C and all PFSAs at 300 °C. This study revealed the difficulties in extracting and quantifying PFAS in sludge and demonstrated the need for further research on finding suitable solutions for complete removal or destruction of PFAS in highly heterogeneous sewage sludge.
Mostrar más [+] Menos [-]Profile and consumption risk assessment of trace elements in megamouth sharks (Megachasma pelagios) captured from the Pacific Ocean to the east of Taiwan
2021
Ju, Yun-Ru | Chen, Chih-Feng | Chen, Chiu-Wen | Wang, Ming-Huang | Joung, Shoou-Jeng | Yu, Chi-Ju | Liu, Kwang-Ming | Tsai, Wen-Pei | Vanson Liu, Shang Yin | Dong, Cheng-Di
Focusing on 27 rare filter-feeding megamouth sharks (Megachasma pelagios) captured as a by-catch of drift gillnet fishery in the Pacific Ocean to the east of Taiwan, this study analyzes the concentrations of 24 elements in their muscle, discusses the bioaccumulation of each element and the correlation between different elements, and assesses the potential health risks of consuming megamouth shark muscle. Among the 24 elements, mean concentrations of Ga, Ag, Li, Bi, Hg, Co, and Cd were relatively low ranging from 10⁻³ to 10⁻¹ mg/kg, those of Pb, Ba, Mn, Ni, As, Cr, B, Sr, Cu, and Zn ranged from 10⁻¹–10¹ mg/kg, and those of Fe, Ca, Al, K, Mg, Ti, and Na were relatively high ranging from 10¹ to 10³ mg/kg. The toxic element content index was most significantly correlated with the concentration of Cu. Hence, this study recommends that the concentration of Cu could be used as an indicator of metal accumulation in megamouth shark muscle. The log bioconcentration factor (BCF) ranged from less than 0 to 7.85 in shark muscle. For elements with a concentration of less than 100 μg/L in seawater, the log BCF was inversely proportional to their concentration in seawater. According to the correlation analysis, the accumulation of elements in muscle of megamouth sharks is primarily affected by the concentrations of dissolved elements in seawater, except that the accumulation of Hg, As, Cu, Ti, Al, and Fe appears to be mainly affected by feeding behaviors. The assessment of the health risk of consuming megamouth shark muscle showed that its total hazard index was greater than 1. This suggests that the long-term or high-frequency consumption of megamouth shark muscle may cause health hazards due to the accumulation of trace elements, particularly those with a large contribution of health risk, including As, Hg, and Cu.
Mostrar más [+] Menos [-]Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation
2021
Wiggenhauser, Matthias | Aucour, Anne-Marie | Bureau, Sarah | Campillo, Sylvain | Telouk, Philippe | Romani, Marco | Ma, Jian Feng | Landrot, Gautier | Sarret, Géraldine
Initial Cadmium (Cd) isotope fractionation studies in cereals ascribed the retention of Cd and its light isotopes to the binding of Cd to sulfur (S). To better understand the relation of Cd binding to S and Cd isotope fractionation in soils and plants, we combined isotope and XAS speciation analyses in soil-rice systems that were rich in Cd and S. The systems included distinct water management (flooded vs. non-flooded) and rice accessions with (excluder) and without (non-excluder) functional membrane transporter OsHMA3 that transports Cd into root vacuoles. Initially, 13% of Cd in the soil was bound to S. Through soil flooding, the proportion of Cd bound to S increased to 100%. Soil flooding enriched the rice plants towards heavy isotopes (δ¹¹⁴/¹¹⁰Cd = −0.37 to −0.39%) compared to the plants that grew on non-flooded soils (δ¹¹⁴/¹¹⁰Cd = −0.45 to −0.56%) suggesting that preferentially light Cd isotopes precipitated into Cd sulfides. Isotope compositions in CaCl₂ root extracts indicated that the root surface contributed to the isotope shift between soil and plant during soil flooding. In rice roots, Cd was fully bound to S in all treatments. The roots in the excluder rice strongly retained Cd and its lights isotopes while heavy isotopes were transported to the shoots (Δ¹¹⁴/¹¹⁰Cdₛₕₒₒₜ₋ᵣₒₒₜ 0.16–0.19‰). The non-excluder rice accumulated Cd in shoots and the apparent difference in isotope composition between roots and shoots was smaller than that of the excluder rice (Δ¹¹⁴/¹¹⁰Cdₛₕₒₒₜ₋ᵣₒₒₜ −0.02 to 0.08‰). We ascribe the retention of light Cd isotopes in the roots of the excluder rice to the membrane transport of Cd by OsHMA3 and/or chelating Cd–S complexes in the vacuole. Cd–S was the major binding form in flooded soils and rice roots and partly contributed to the immobilization of Cd and its light isotopes in soil-rice systems.
Mostrar más [+] Menos [-]Chemical source profiles of particulate matter and gases emitted from solid fuels for residential cooking and heating scenarios in Qinghai-Tibetan Plateau
2021
Sun, Jian | Shen, Zhenxing | Zhang, Bin | Zhang, Leiming | Zhang, Yue | Zhang, Qian | Wang, Diwei | Huang, Yu | Liu, Suixin | Cao, Junji
Incomplete combustion of solid fuels (animal dung and bituminous coal) is a common phenomenon during residential cooking and heating in the Qinghai-Tibetan Plateau (QTP), resulting in large amounts of pollutants emitted into the atmosphere. This study investigated the pollutant emissions from six burning scenarios (heating and cooking with each of the three different fuels: yak dung, sheep dung, and bitumite) in the QTP's pastoral dwellings. Target pollutants such as carbon monoxide (CO), gas-phase polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), fine particles (PM₂.₅, particulate matter with an aerodynamic diameter < 2.5 μm), carbonaceous aerosols, water-soluble ions, and particle-phase PAHs were investigated. Emission factors (EFs) (mean ± standard deviation) of PM₂.₅ from the six scenarios were in the range of 1.21 ± 0.47–7.03 ± 1.95 g kg⁻¹, of which over 60% mass fractions were carbonaceous aerosols. The ratio of organic carbon to elemental carbon ranged from 9.6 ± 2.7–33.4 ± 11.5 and 81.7 ± 30.4–91.9 ± 29.0 for dung and bitumite burning, respectively. These values were much larger than those reported in the literature, likely because of the region's high altitudes—where the oxygen level is approximately 65% of that at the sea level—thus providing a deficient air supply to stoves. However, the toxicity and carcinogenicity of PAHs emitted from solid fuel combustion in the QTP are significant, despite a slightly lower benzo(a)pyrene-equivalent carcinogenic potency (Bapₑq) in this study than in the literature. The gas-to-particle partitioning coefficient of PAHs and VOC emission profiles in the QTP differed significantly from those reported for other regions in the literature. More attention should be paid to the emissions of PAH derivatives (oxygenated PAHs and nitro-PAHs), considering their enhanced light-absorbing ability and high BaPₑq from solid fuel combustion in the QTP.
Mostrar más [+] Menos [-]Effects of glyphosate-based herbicide-contaminated diets on reproductive organ toxicity and hypothalamic-pituitary-ovarian axis hormones in weaned piglets
2021
Fu, Huiyang | Gao, Feng | Wang, Xiaoxu | Tan, Peng | Qiu, Shengnan | Shi, Baoming | Shan, Anshan
At present, glyphosate (GLP) is the most produced and used herbicide in the world. With the large-scale use of glyphosate-based herbicides (GBHs), their toxic effects on animals and plants have increasingly become a concern. Based on the Codex Alimentarius Commission (CODEX) dose (20 mg kg⁻¹) and the dose set by the government (40 mg kg⁻¹), four experimental groups in which Roundup® (R) herbicide was added to the feed of weaned piglets at GLP concentrations of 0, 10, 20, and 40 mg kg⁻¹ were designed. The results showed that R had no significant effect on the vulvar size or index of reproductive organs but that it could affect the tissue morphology and ultrastructure of the uterus and ovary. With the increase in GLP concentration, the activities of antioxidant enzymes [SOD (P < 0.05) and GPx (P = 0.002)] in the uterus showed significant increases. Compared with the control group, the content of hydrogen peroxide (H₂O₂) in the treatment groups increased significantly (P < 0.05), the malondialdehyde (MDA) content in the 10 mg kg⁻¹ treatment group was significantly higher than that in the control group. We measured hypothalamic-pituitary-ovarian axis (HPOA) hormones and also found that GLP significantly increased luteinizing hormone-releasing hormone (LHRH), gonadotropin-releasing hormone (GnRH) and testosterone (T) content (P < 0.05) and decreased follicle-stimulating hormone (FSH) content (P < 0.05). In summary, although R does not affect the vulvar size or reproductive organ index of weaned piglets, it changes the morphology and ultrastructure of the uterus and ovaries, interferes with the synthesis and secretion of HPOA hormones, and causes changes in the balance of the antioxidant system of uterus. This study provided a theoretical basis for preventing reproductive system harm caused by GBHs.
Mostrar más [+] Menos [-]Improving source inversion performance of airborne pollutant emissions by modifying atmospheric dispersion scheme through sensitivity analysis combined with optimization model
2021
Mao, Shushuai | Lang, Jianlei | Chen, Tian | Cheng, Shuiyuan
Estimating accurately airborne pollutant emissions source information (source strength and location) is important for achieving effective air pollution management or adequate emergency responses to accidents. Inversion method is one of the useful tools to identify the source parameters. The atmospheric dispersion scheme has been proven to be the key to determining the source inversion performance by influencing the accuracy of the dispersion models. Modifying the atmospheric dispersion scheme is an important potential method to improve the inversion performance, but this has not been studied previously. To fill this gap, a novel approach for parameter sensitivity analysis combined with an optimization method was proposed to improve the source inversion performance by optimizing empirical scheme. The dispersion coefficients σy and σz of the typical BRIGGS scheme under different atmospheric dispersion conditions were optimized and used for air pollutant dispersion and source inversion. The results showed that the prediction performance of the air pollutant concentrations was greatly improved with statistical indices |FB| and NMSE decreased by 0.22 and 2.07, respectively; FAC2 and R increased by 0.10, and 0.08, respectively. For source inversion, the results of the significance analysis suggested that the accuracy in the source strength and location parameter (x0) were both significantly improved by ∼271% (relative deviation reduced from 60.0% to 16.2%) and ∼121% (absolute deviation reduced from 27.6 to 12.5 m). The improvement of source strength inversion accuracy was more significant under unstable atmospheric conditions (stability class A, B, and C); the mean absolute relative deviation was reduced by 97.5%. These results can help to obtain more accurate source information and to provide reliable reference for air pollution managements or emergency response to accidents. This study provides a novel and versatile approach to improve estimation performance of pollutant emission sources and enhances our understanding of source inversion.
Mostrar más [+] Menos [-]Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems?
2021
Sathicq, María Belén | Sabatino, Raffaella | Corno, Gianluca | Di Cesare, Andrea
In the last decade, the study of the origin and fate of plastic debris received great attention, leading to a new and broad awareness of the hazard represented by these particles for the environment and the biota. At the same time, the scientific consideration on the leading role of the environment regarding the spread of antibiotic resistant bacteria (ARB) increased. Both, microplastic particles (MPs) and ARB share pollution sources and, in aquatic systems, MPs could act as a novel ecological niche, favouring the survival of pathogens and ARB. MPs can host a specific microbial biofilm, referred to as plastisphere, phylogenetically different from the surrounding planktonic microbial community and from the biofilm growing on other suspended particles. The plastisphere can influence the overall microbiome of a specific habitat, by introducing and supporting different species and by increasing horizontal gene transfer. In this review we collect and analyse the available studies coupling MPs and antibiotic resistance in water, highlighting knowledge gaps to be filled in order to understand if MPs could effectively act as a carrier of ARB and antibiotic resistance genes, and pose a real threat to human health.
Mostrar más [+] Menos [-]