Refinar búsqueda
Resultados 1561-1570 de 8,010
How do humans recognize and face challenges of microplastic pollution in marine environments? A bibliometric analysis Texto completo
2021
Wu, Mengjie | Jiang, Lichang | Kwong, Raymond W.M. | Brar, Satinder Kaur | Zhong, Huan | Ji, Rong
Microplastics (MPs) are abundant in marine environments, drawing global attention from scientists and rendering it significant to review the research progress and predict future trends of this field. To achieve that, we collected 1898 publications on marine MPs from Web of Science and performed a bibliometric analysis by CiteSpace and VOSviewer. Additionally, we utilized an unrestricted retrieval of literature from ScienceDirect to supplement our major findings. Trends in publication numbers show the growth in study from the initial stage (2012 and before), when microplastic (MP) occurrence, abundance, and distribution were primarily investigated. Throughout the ascent stage (between 2013–2016), when diverse sampling and analytical methods were applied to capture and identify MPs from the ocean, baseline data have been gleaned on physiochemical properties of MPs. The research focus then shifted to the bioaccumulation and ecotoxicological effects of MPs on marine biota, further highlighting their potential deleterious impacts on human health via dietary exposure, and this period was defined as the exploration stage (2017 and onwards). Nevertheless, key challenges including the lack of standard procedures for MP sampling, technical limitations in MP detecting and identification, and controversy about the underlying effects on the marine ecosystems and humans have also been arisen in the last decade. The present study elucidates how we gradually recognize MP pollution in marine environments and what challenges we face, suggesting future avenues for MP research.
Mostrar más [+] Menos [-]Groundwater antibiotic pollution and its relationship with dissolved organic matter: Identification and environmental implications Texto completo
2021
Gros, Meritxell | Catalán, Núria | Mas-Pla, Josep | Čelić, Mira | Petrović, M. (Mira) | Farré, Maria José
The occurrence of veterinary antibiotics and hydro-chemical parameters in eleven natural springs in a livestock production area is evaluated, jointly with the characterization of their DOM fingerprint by Orbitrap HRMS. Tetracycline and sulfonamide antibiotics were ubiquitous in all sites, and they were detected at low ng L⁻¹ concentrations, except for doxycycline, that was present at μg L⁻¹ in one location. DOM analysis revealed that most molecular formulas were CHO compounds (49 %–68 %), with a remarkable percentage containing nitrogen and sulphur (16 %–23 % and 11 %–24 %, respectively). Major DOM components were phenolic and highly unsaturated compounds (~90 %), typical for soil-derived organic matter, while approximately 11 % were unsaturated aliphatic, suggesting that springs may be susceptible to anthropogenic contamination sources. Comparing the DOM fingerprint among sites, the spring showing the most different profile was the one with surface water interaction and characterized by having lower CHO and higher CHOS formulas and aliphatic compounds. Correlations between antibiotics and DOM showed that tetracyclines positively correlate with unsaturated oxygen-rich substances, while sulfonamides relate with aliphatic and unsaturated oxygen-poor compounds. This indicates that the fate of different antibiotics will be controlled by the type of DOM present in groundwater.
Mostrar más [+] Menos [-]Highly-resolved spatial-temporal variations of air pollutants from Chinese industrial boilers Texto completo
2021
Tong, Yali | Gao, Jiajia | Wang, Kun | Jing, Hong | Wang, Chenlong | Zhang, Xiaoxi | Liu, Jieyu | Yue, Tao | Wang, Xin | Xing, Yi
Industrial boilers are a significant anthropogenic source of air pollutant emissions. In this study, a county-based atmospheric emission inventory of particulate matter (PM), PM₁₀, PM₂.₅, SO₂, NOx, organic carbon (OC) and elemental carbon (EC) from industrial boilers over mainland China in 2017 was developed for the first time, based on county-level activity data from ~61,000 coal-fired industrial boilers (CFIBs), ~44,000 biomass-fired industrial boilers (BFIBs), ~71,000 gas-fired industrial boilers (GFIBs) and ~9300 oil-fired industrial boilers (OFIBs), updated emission factors (EFs) and air pollution control device (APCD) efficiencies. The total national PM, PM₂.₅, PM₁₀, SO₂, NOx, OC and EC emissions from industrial boilers in 2017 were estimated to be 1,240, 347, 761, 1,648, 1,340, 13.1 and 15.8 kilotons (kt), respectively. Intensive air pollutant emissions from industrial boilers of more than 1000 kg/km² were predominantly in north-eastern, northern and eastern China. CFIBs contributed the most (77.6–94.0 %) to air pollutant emissions because of their high air pollutant EFs and the large amounts of coal consumed. BFIBs were the second-highest contributor to national air pollutant emissions, with the contribution of BFIBs to PM₂.₅, OC and EC emissions in central and southern China reaching up to 42.1 %, 61.7 % and 45.5 %, respectively. There were seasonal peaks in monthly air pollutant emissions in heating regions. The overall uncertainty realting to the new emission inventory was estimated as −25.9 %–22.7 %. Significant air pollutant emission reductions were obtained from 2017 to 2030, and by 2030 the PM, PM₁₀, PM₂.₅, SO₂ and NOx emissions were forecast to decrease by 40.1–84.0 %, 41.6–84.3 %, 44.5–75.2 %, 44.5–75.2 % and 19.5–46.8 % compared to 2017, respectively, under four proposed scenarios. The results of this study showed that differentiated industrial boiler management measures should be developed according to the actual emission characteristics.This work developed a county-based atmospheric emission inventory of PM, PM₁₀, PM₂.₅, SO₂, NOx, OC and EC from Chinese industrial boilers in 2017 for the first time.
Mostrar más [+] Menos [-]Exposure to hexafluoropropylene oxide dimer acid (HFPO-DA) disturbs the gut barrier function and gut microbiota in mice Texto completo
2021
Xie, Xiaoxian | Zhou, Jiafeng | Hu, Luting | Shu, Ruonan | Zhang, Mengya | Xiong, Ze | Wu, Fengchun | Fu, Zhengwei
Hexafluoropropylene oxide dimer acid (HFPO-DA) is the substitute for perfluoro octanoic acid (PFOA), and recently it has been detected in environmental water samples worldwide and has multiple toxicities. However, whether it will affect the intestines and gut microbiota remains unclear. In this study, in order to evaluate the gut toxicity of HFPO-DA in mammals, male mice were orally exposed to 0, 2, 20, 200 μg/L HFPO-DA, respectively, for 6 weeks. Our results showed that HFPO-DA exposure caused colonic inflammation which was coupled with increased TNF-α levels in serum and increased mRNA expression levels of TNF-α, p65, TLR4, MCP-1 of the colon in mice after exposure to 200 μg/L HFPO-DA. We also found that HFPO-DA exposure induced the decreased mRNA expression levels and protein levels of MUC2 and ZO-1, which means the dysfunction of gut barrier in the colon. In the ileum, we found that HFPO-DA exposure induced the increased mRNA expression levels of various inflammatory factors, but no obvious changes was found to barrier function. Additionally, HFPO-DA exposure caused the imbalance of cecal gut microbiota and changes of cecal microbiota diversity. Taken together, all these results indicate the potential gut toxicity of HFPO-DA and is perceived as a major problem of health risk that affects the inflammation, gut barrier dysfunction, and gut microbiota disturbance in mammals.
Mostrar más [+] Menos [-]A bibliometric analysis of industrial wastewater treatments from 1998 to 2019 Texto completo
2021
Mao, Guozhu | Hu, Haoqiong | Liu, Xi | Crittenden, John | Huang, Ning
For the foreseeable future, industrial water demand will grow much faster than agriculture. The demand together with the urgency of wastewater treatment, will pose big challenges for most developing countries. We applied the bibliometric analysis combined with social network analysis and S-curve technique to quantitatively analyze 9413 publications related to industrial wastewater treatment in the Scientific Citation Index (SCI) and Social Sciences Citation Index (SSCI) databases from 1998 to 2019. The results showed that: (1) Publications on industrial wastewater treatment have increased from 120 in 1998 to 895 in 2019 with a steady annual increment rate, and researchers have focused more on the application and optimization of existing technologies. (2) China had the highest number of publications (n = 1651, 19.66% of global output) and was a core country in the international cooperation network, whereas the United States and European countries produced higher quality papers. (3) By analyzing the co-occurrence and clusters of keywords and comparing three wastewater treatment categories (physical, chemical, biological), adsorption (n = 1277), oxidation (n = 1085) and activated sludge process (n = 1288) were the top three techniques. Researchers have shifted their focus to treatment technologies for specific wastewater type, such as textile wastewater, pulp and paper wastewater, and pharmaceutical wastewater. The S-curve from articles indicates that physical and chemical treatment technologies are attached with great potential in the near future, especially adsorption and advanced oxidation, while the biological treatment technologies are approaching to the saturation stage. Different pattern is observed for the S-curve derived from patents, which stressed the limited achievement until now and further exploration in the field application for the three treatment categories. Our analysis provides information of technology development landscape and future opportunities, which is useful for decision makers and researchers who are interested in this area.
Mostrar más [+] Menos [-]Association of air pollution and greenness with carotid plaque: A prospective cohort study in China Texto completo
2021
Xie, Yinyu | He, Weiliang | Zhang, Xiaoling | Cui, Jian | Tian, Xiaochao | Chen, Jiang | Zhang, Kaihua | Li, Shanshan | Di, Niu | Xiang, Hao | Wang, Hebo | Chen, Gongbo | Guo, Yuming
Previous studies indicated that exposure to air pollution was associated with the progress of atherosclerosis, but evidence is very limited in China and even in the world. This study aims to assess the associations of long-term exposures to air pollution and greenness with the occurrence of carotid plaque. Participants of this cohort study were urban residents and office workers who visited Hebei General Hospital for routine physical examination annually from September 2016 through to December 2018. Eligible participants were people diagnosed the absence of carotid plaque clinically at their first hospital visit and were followed up at their second or third hospital visit. Exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM₂.₅), nitrogen dioxide (NO₂) and ozone (O₃) were estimated using an inverse distance weighted (IDW) method. The level of greenness was assessed using the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The associations were evaluated using Cox proportional hazards regression models. Among 4,137 participants, 575 showed the occurrence of carotid plaque during the follow-up period. After controlling for potential confounders, the hazard ratios (HRs) and 95% confidence intervals (95%CIs) of carotid plaque associated with per interquartile range (IQR) increase in PM₂.₅, NO₂, and O₃ were 1.78 (1.55, 2.03), 1.32 (1.14, 1.53) and 1.99 (1.71, 2.31), respectively. Increased EVI and NDVI were significantly associated with lower risk of carotid plaque [HR (and 95%CI): 0.84 (0.77, 0.93) and 0.87 (0.80, 0.94)]. PM₂.₅ significantly mediated 80.47% or 93.00% of the estimated association between EVI or NDVI and carotid plaque. In light of the significant associations between air pollution, greenness and carotid plaque in this study, continued efforts are needed to curb air pollution and plan more green space considering their effects on vascular disease.
Mostrar más [+] Menos [-]Spatial patterning of chlorophyll a and water-quality measurements for determining environmental thresholds for local eutrophication in the Nakdong River basin Texto completo
2021
Kim, Hyo Gyeom | Hong, Sungwon | Chon, Tae Soo | Joo, Gea-Jae
Management of water-quality in a river ecosystem needs to be focused on susceptible regions to eutrophication based on proper measurements. The stress–response relationships between nutrients and primary productivity of phytoplankton allow the derivation of ecologically acceptable thresholds of stressors under field conditions. However, spatio-temporal variations in heterogeneous environmental conditions have hindered the development of locally applicable criteria. To address these issues, we utilized a combination of a geographically specialized artificial neural network (Geo-SOM, geo-self-organizing map) and linear mixed-effect models (LMMs). The model was applied to a 24-month dataset of 54 stations that spanned a wide spatial gradient in the Nakdong River basin. The Geo-SOM classified 1286 observations in the basin into 13 clusters that were regionally and seasonally distinct. Inclusion of the random effects of Geo-SOM clustering improved the performance of each LMM, which suggests that there were significant spatio-temporal variations in the Chla–stressor relationships. These variations arise owing to differences in background seasonality and the effects of local pollutant variables and land-use patterns. Among the 16 environmental variables, the major stressors for Chla were total phosphate (TP) as a nutrient and biological oxygen demand (BOD) as a non-nutrient according to the results of both Geo-SOM and LMM analyses. Based on LMMs with the random effect of the Geo-SOM clusters on the intercept and the slope, we can propose recommended thresholds for TP (18.5 μg L⁻¹) and BOD (1.6 mg L⁻¹) in the Nakdong River. The combined method of LMM and Geo-SOM will be useful in guiding appropriate local water-quality-management strategies and in the global development of large-scale nutrient criteria.
Mostrar más [+] Menos [-]Occurrence of pyrethroids in the atmosphere of urban areas of Southeastern Brazil: Inhalation exposure and health risk assessment Texto completo
2021
Guida, Yago | Pozo, Karla | Carvalho, Gabriel Oliveira de | Capella, Raquel | Targino, Admir Créso | Torres, João Paulo Machado | Meire, Rodrigo Ornellas
The occurrence of organochlorine pesticides (OCPs) used decades ago for vector control in urban areas is still reported as a threat to human health. Pyrethroids emerged as a replacement for OCPs in sanitary campaigns and are currently the main insecticides used for vector control worldwide, with prominent use as agricultural and household insecticides, for veterinary and gardening purposes, and as wood preservative. This study aimed to assess the occurrence, seasonal variation, and potential sources of pyrethroids in ambient air of two urban regions of Southeastern Brazil, along with the potential health risks to local populations via inhalation exposure. Pyrethroids were sampled by polyurethane foam passive air samplers and their concentrations were determined by gas chromatography coupled with electron capture negative ionization mass spectrometry (GC/ECNI-MS). Atmospheric pyrethroid concentrations (hereinafter reported in pg m⁻³) were considerably higher than those reported by previous studies worldwide. Cypermethrin (median: 2446; range: 461–15 125) and permethrin (655; 19–10 328) accounted for 95% of the total measured pyrethroids in ambient air. The remaining fraction comprised smaller amounts of bifenthrin (46; <limit of detection (LOD)–5171), deltamethrin (58; <LOD–564), phenothrin (7; <LOD–22) and fenvalerate (0.3; <LOD–3). Bifenthrin, deltamethrin and permethrin were linked to local sources, while cypermethrin, fenvalerate and phenothrin had more prominent regional contributions. In broad terms, most pyrethroids showed no clear seasonal trend. The concentrations and hazard quotients (HQs) showed the following order of occurrence and magnitude: urban > urban-industrial > background areas. HQs increased with decreasing age group, but deterministic and probabilistic estimates did not identify direct health risks for any group. Nevertheless, since only inhalation exposure was considered in this work, other pathways should be investigated to provide a more comprehensive risk assessment of the human exposure to pyrethroids.
Mostrar más [+] Menos [-]Mutual promotion of submerged macrophytes and biofilms on artificial macrophytes for nitrogen and COD removal improvement in eutrophic water Texto completo
2021
Zhao, Dehua | Chen, Chen | Yang, Jiqiang | Zhou, Shenyan | Du, Juan | Zhang, Miao | An, Shuqing
Both submerged macrophytes (SMs) and artificial macrophytes (AMs) have been widely used to improve water quality in eutrophic water. However, in heavily eutrophic aquatic ecosystems, the purification function of SMs is often restricted by the poor growth state due to competition from algae, while the purification function of AMs is often restricted by the limited carbon source supply for biofilm microbes attached to the AM surface. The objective of this study was to develop a new strategy to increase pollutant removal efficiency (RE) by combining the use of SMs and AMs. Pilot-scale microcosms, including treatments with both SMs and AMs (S&A), only SMs (SO) and only AMs (AO), were established to identify the performance of the new strategy. The results suggest that treatment S&A obtained REs of 88.9% for total nitrogen (TN) and 48.1% for chemical oxygen demand (COD); as comparison, treatments SO and AO obtained REs of 77.4% and 81.2% for TN and REs of −13.7% and 39.0% for COD, respectively. Compared with SO, the S&A treatment benefited SM growth in biomass, leaf chlorophyll concentration and root activity by inhibiting algae growth. In addition, compared with treatment AO, S&A increased the biofilm microbial biomass and the relative abundance of nitrifiers of families Nitrosomonadaceae and Nitrospira attached to AM surfaces. Therefore, by the mutual promotion of SMs and biofilms on AMs, the synergic application of SMs and AMs is a useful strategy for improving TN and COD REs in eutrophic water bodies such as rivers and constructed wetlands.A strategy was developed to increase nitrogen and COD removal in eutrophic water by the mutual promotion of submerged macrophytes and biofilms on artificial macrophytes.
Mostrar más [+] Menos [-]Solar photocatalytic degradation of ibuprofen with a magnetic catalyst: Effects of parameters, efficiency in effluent, mechanism and toxicity evolution Texto completo
2021
Gong, Han | Zhu, Wei | Huang, Yumei | Xu, Lijie | Chen, Meijuan | Yan, Muting
The environmental-friendly photocatalytic process with a magnetic catalyst CoFe₂O₄/TiO₂ mediated by solar light for ibuprofen (IBP) degradation in pure water, wastewater effluent and artificial seawater was investigated systematically. The study aims to reveal the efficiency, the mechanism and toxicity evolution during IBP degradation. Hydroxyl radicals and photo-hole (h⁺) were found to contribute to the IBP decay. The presence of SO₄²⁻ showed no significant effect, while NO₃⁻ accelerated the photodegradation, and other anions including HCO₃⁻, Cl⁻, F⁻, and Br⁻ showed significant inhibition. The removal efficiency was significantly elevated with the addition of peroxymonosulfate (PMS) or persulfate (PS) ([Oxidant]₀:[IBP]₀ = 0.4–4), with reaction rate of 5.3–13.1 and 1.3–2.9 times as high as the control group, respectively. However, the reaction was slowed down with the introduction of H₂O₂. A mathematic model was employed to describe the effect of ferrate, high concentration or stepwise addition of ferrate was suggested to play a positive role in IBP photodegradation. Thirteen transformation products were identified and five of them were newly reported. The degradation pathways including hydroxylation, the benzene ring opening and the oxidation of carbon were proposed. IBP can be efficiently removed when spiked in wastewater and seawater despite the decreased degradation rate by 41% and 56%, respectively. Compared to the IBP removal, mineralization was relatively lower. The adverse effect of the parent compound IBP to the green algae Chlorella vulgaris was gradually eliminated with the decomposition of IBP. The transformation product C178a which possibly posed toxicity to rotifers Brachionus calyciflorus can also be efficiently removed, indicating that the photocatalysis process is effective in IBP removal, mineralization and toxicity elimination.
Mostrar más [+] Menos [-]