Refinar búsqueda
Resultados 1631-1640 de 7,995
Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions Texto completo
2021
In this study, the co-pyrolysis of food waste with lignocellulosic biomass (wood bark) in a continuous-flow pyrolysis reactor was considered as an effective strategy for the clean disposal and value-added utilization of the biowaste. To achieve this aim, the effects of major co-pyrolysis parameters such as pyrolysis temperature, the flow rate of the pyrolysis medium (nitrogen (N₂) gas), and the blending ratio of food waste/wood bark on the yields, compositions, and properties of three-phase pyrolytic products (i.e., non-condensable gases, condensable compounds, and char) were investigated. The temperature and the food waste/wood bark ratio were found to affect the pyrolytic product yields, while the N₂ flow rate did not. More non-condensable gases and less char were produced at higher temperatures. For example, as the temperature was increased from 300 °C to 700 °C, the yield of non-condensable gases increased from 6.3 to 17.5 wt%, while the yield of char decreased from 63.6 to 30.6 wt% for the co-pyrolysis of food waste and wood bark at a weight ratio of 1:1. Both the highest yield of hydrogen (H₂) gas and the most significant suppression of the formation of phenolic and polycyclic aromatic hydrocarbon (PAH) compounds were achieved with a combination of food waste and wood bark at a weight ratio of 1:1 at 700 °C. The results suggest that the synergetic effect of food waste and lignocellulosic biomass during co-pyrolysis can be exploited to increase the H₂ yield while limiting the formation of phenolic compounds and PAH derivatives. This study has also proven the effectiveness of co-pyrolysis as a process for the valorization of biowaste that is produced by agriculture, forestry, and the food industry, while reducing the formation of harmful chemicals.
Mostrar más [+] Menos [-]Water-soluble graphitic carbon nitride for clean environmental applications Texto completo
2021
(Dhinasekaran),
The removal of halogenated dye and sensing of pharmaceutical products in the water bodies with quick purification time is of high need due to the scarcity of drinking water. The present work reported on the preparation of graphitic carbon nitride (g-C₃N₄) for quick time water contaminant adsorption, followed by synthesizing silver nanoparticles decorated graphitic carbon nitride for pharmaceutical product sensing using in-situ SERS technique. The prepared graphitic carbon nitride is used to study the adsorption behavior of water contaminants at room temperature, in the presence of methylene blue (MB) as an adsorbate model. The water-soluble graphitic carbon nitride, even at low concentration, possesses an excellent ability to adsorb halogenated organic dye. As a result, the dyes are found to adsorb within ∼5s even without any additional physical or chemical activation. From the UV–Vis absorption investigations, it has been perceived that in the presence of graphitic carbon nitride (g-C₃N₄) the dye adsorption efficacy is observed nearly 80% with the well fitted linearly of R² = 0.9731. Effective in-situ surface-enhanced Raman scattering (SERS) studies for Ag nanoparticles decorated graphitic carbon nitride has been carried out and the obtained result shows good sensing performance of the material towards acetaminophen drug. This method opens the possibility of the Nobel metal decorated graphitic carbon nitride for real-time sensing of SERS-based drug products along with the development of high-performance sensing of the target analyte in the future.
Mostrar más [+] Menos [-]The heart of the adult goldfish Carassius auratus as a target of Bisphenol A: a multifaceted analysis Texto completo
2021
Bisphenol A (BPA) is a contaminant whose presence in aquatic environments is increasing. In fish embryos and larvae, it severely affects cardiac development; however, its influence on the heart function of adult fish has been scarcely analyzed. This study investigated the effects of the in vivo exposure to BPA on heart physiology, morphology, and oxidative balance in the goldfish Carassius auratus. Adult fish were exposed for 4 and 10 days to two BPA concentrations (10 μM and 25 μM). Ex vivo working heart preparations showed that high concentrations of BPA negatively affected cardiac hemodynamics, as revealed by an impaired Frank-Starling response. This was paralleled by increased cardio-somatic indices and by myocardial structural changes. An altered oxidative status and a modulation of stress (HSPs) and pro-apoptotic (Bax and Cytochrome C) proteins expression were also observed in the heart of animals exposed to BPA, with detrimental effects at the highest concentration and the longest exposure time. Results suggest that, in the adult goldfish, BPA may induce stressful conditions to the heart with time- and concentration-dependent deleterious morpho-functional alterations.
Mostrar más [+] Menos [-]Soil-air partitioning of semivolatile organic compounds in the Lesser Himalaya region: Influence of soil organic matter, atmospheric transport processes and secondary emissions Texto completo
2021
After decades of imposed regulations about reducing the primary emissions of persistent organic pollutants (POPs), these pollutants are still present in the environment. Soils are important repositories of such persistent semivolatile organic contaminants (SVOCs), and it is assumed that SVOCs sequestered in these reservoirs are being re-mobilized due to anthropogenic influence. In this study, concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in soil and air, their fugacities, fluxes and the soil-air partition coefficient (KSA) were determined for three different land cover types (glacial, remote/mountainous and urban) of the Lesser Himalayan Region (LHR). The concentrations of OCPs, PCBs and PBDEs in soils and air ranged between 0.01 and 2.8, 0.81–4.8, 0.089–0.75 ng g⁻¹; 0.2–106, 0.027–182, and 0.011–7.26 pg m⁻³, respectively. The levels of SVOCs in the soil were correlated with soil organic matter (SOM) indicating that SOM is a substrate for the organic pollutants in soils. The Clausius-Clapeyron plots between ln P and inverse of temperature (1000/T) suggested that long range atmospheric transport was the major input source of PBDEs and higher chlorinated PCBs over the LHR. The uneven and wide distribution of local sources in LHR and up-slope enrichment of SVOCs explained the spatial variability and altitudinal patterns. The soils near mountain and urban lakes act as local sinks of SVOCs such as β-HCH, pp΄-DDT, CB-28, -118, −153, BDE-47, -99, and −154, with soil-air exchange fluxes tending more toward deposition. However, the soils near glacial lakes acted as local sources of more volatile congeners of α-HCH, γ-HCH, op′-DDT, pp′-DDE and lower to medium chlorinated PCBs such as CB-18, -28, −53, −42 and BDE-47, -99, with soil-air exchange tending more toward volatilization flux.
Mostrar más [+] Menos [-]Curcumin suppresses cell growth and attenuates fluoride-mediated Caspase-3 activation in ameloblast-like LS8 cells Texto completo
2021
The trace element fluoride can be beneficial for oral health by preventing dental caries. However, fluoride is also known as an environmental pollutant. Fluoride pollution can lead to fluoride over-ingestion and can cause health issues, including dental fluorosis. Curcumin attenuated fluoride-induced toxicity in animal models, however the molecular mechanisms of how curcumin affects fluoride toxicity remain to be elucidated. We hypothesized that curcumin attenuates fluoride toxicity through modulation of Ac-p53. Here we investigated how curcumin affects the p53-p21 pathway in fluoride toxicity.LS8 cells were treated with NaF with/without curcumin. Curcumin significantly increased phosphorylation of Akt [Thr308] and attenuated fluoride-mediated caspase-3 cleavage and DNA damage marker γH2AX expression. Curcumin-mediated attenuation of caspase-3 activation was reversed by Akt inhibitor LY294002 (LY). However, LY did not alter curcumin-mediated γH2AX suppression. These results suggest that curcumin inhibited fluoride-mediated apoptosis via Akt activation, but DNA damage was suppressed by other pathways. Curcumin did not suppress/alter fluoride-mediated Ac-p53. However, curcumin itself significantly increased Ac-p53 and upregulated p21 protein levels to suppress cell proliferation in a dose-dependent manner. Curcumin suppressed fluoride-induced phosphorylation of p21 and increased p21 levels within the nuclear fraction. However, curcumin did not reverse fluoride-mediated cell growth inhibition. These results suggest that curcumin-induced Ac-p53 and p21 led to cell cycle arrest, while curcumin attenuated fluoride-mediated apoptosis via activation of Akt and suppressed fluoride-mediated DNA damage.By inhibiting DNA damage and apoptosis, curcumin may potentially alleviate health issues caused by fluoride pollution. Further studies are required to better understand the mechanism of curcumin-induced biological effects on fluoride toxicity.
Mostrar más [+] Menos [-]Quality of urban green spaces influences residents’ use of these spaces, physical activity, and overweight/obesity Texto completo
2021
The quality characteristics of urban green spaces (UGS) have been suggested to play a critical role in their use and their potentials to exert health effects. However, epidemiological studies evaluating such a role are scarce. These studies have generally focused on a limited number of quality dimensions. We studied the association between 10 UGS quality dimensions, assessed through a comprehensive multidimensional tool, and physical activity, overweight/obesity, and UGS use. Our study was based on 2053 adults participating in the Barcelona Health Survey (2016) and the quality of 149 UGS located in Barcelona, Spain. For each participant, we abstracted the average and maximum quality score separately for each of the 10 quality dimensions and an overall quality score for the UGS within 300 m of the participant’s residential address. Data on the study outcomes were obtained through face-to-face interviews. We developed logistic regression and negative binomial models to assess our evaluated associations and conducted mediation analyses between the different outcomes. We observed that the overall quality of UGS was associated with higher likelihood of engaging in moderate-to-vigorous physical activity (OR:1.13; 95% CI:1.00–1.27), lower risk of overweight/obesity (OR: 0.88; 95% CI: 0.79–0.98), and increased use of UGS (exponentiated regression coefficient: 1.08; 95% CI:1.01–1.15). For the quality dimensions, we observed different patterns of associations depending on the outcome; however, bird biodiversity and amenities seem to be relevant to all of our evaluated outcomes. The mediation analysis suggested that UGS use mediate the association between quality and physical activity, while physical activity mediates the association between quality and overweight/obesity. The novel results from this study will allow decision-makers better design UGS and directly pinpoint relevant quality dimensions to promote physical activity, reduce the risk of overweight/obesity and boost the use of UGS amongst citizens.
Mostrar más [+] Menos [-]Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: Metabolic processes Texto completo
2021
The high global consumption of ibuprofen and its limited elimination by wastewater treatment plants (WWTPs), has led to the contamination of aquatic systems by this common analgesic and its metabolites. The potentially negative environmental and public health effects of this emerging contaminant have raised concerns, driving the demand for treatment technologies. The implementation of bacteria which mineralize organic contaminants in biopurification systems used to decontaminate water or directly in processes in WWTPs, is a cheap and sustainable means for complete elimination before release into the environment. In this work, an ibuprofen-mineralizing bacterial strain isolated from sediments of the River Elbe was characterized and assayed to remediate different ibuprofen-polluted media. Strain RW412, which was identified as Sphingopyxis granuli, has a 4.48 Mb genome which includes plasmid sequences which harbor the ipf genes that encode the first steps of ibuprofen mineralization. Here, we confirm that these genes encode enzymes which initiate CoA ligation to ibuprofen, followed by aromatic ring activation by a dioxygenase and retroaldol cleavage to unequivocally produce 4-isobutylcatechol and propionyl-CoA which then undergo further degradation. In liquid mineral salts medium, the strain eliminated more than 2 mM ibuprofen within 74 h with a generation time of 16 h. Upon inoculation into biopurification systems, it eliminated repeated doses of ibuprofen within a few days. Furthermore, in these systems the presence of RW412 avoided the accumulation of ibuprofen metabolites. In ibuprofen-spiked effluent from a municipal WWTP, ibuprofen removal by this strain was 7 times faster than by the indigenous microbiota. These results suggest that this strain can persist and remain active under environmentally relevant conditions, and may be a useful innovation to eliminate this emerging contaminant from urban wastewater treatment systems.
Mostrar más [+] Menos [-]Assessment of legacy mine metal contamination using ants as indicators of contamination Texto completo
2021
Most legacy mines contributed to contamination of the environment before and after cessation of mining. Contamination from waste rock, slag and tailings can introduce large concentrations of metals and metalloids to the surface soil and downstream sediments. Since ants are able to accumulate metals in their bodies, we investigated the possibility of using the elemental compositions of ants as indicators of metals at legacy mines developed on ores rich in copper (Cu), zinc (Zn), arsenic (As), silver (Ag) and lead (Pb). Our results showed the concentrations of manganese (Mn) and Cu in ants were not significantly different between mine and reference samples and only Zn was significantly different between contaminated and reference areas. Crematogaster spp. and Notoncus spp. from reference areas accumulated larger concentrations of metals in their bodies compared to ants from the mine. Ants accumulated metals in different parts of their bodies. The abdomen was the main site for accumulation of Mn, iron (Fe) and Zn. Mandibles were only associated with accumulation of Zn. Copper and Pb showed no area of preferential accumulation and traces were detected in the whole body of the ants. Ants from five genera had similar regions for metal accumulation. The exoskeleton did not contribute to accumulation of metals; instead all metals were stored in internal organs. Not all genera were suitable for use as indicators; only Iridomyrmex spp. and Ochetellus spp. accumulated larger amount of metals in mine samples compared to reference samples.
Mostrar más [+] Menos [-]Remediation of contaminated sediments containing both organic and inorganic chemicals using ultrasound and ozone nanobubbles Texto completo
2021
Most river sediments are contaminated with organic and inorganic pollutants and cause significant environmental damage and health risks. This research is evaluated an in-situ sediment remediation method using ultrasound and ozone nanobubbles to remove organic and inorganic chemicals in contaminated sediments. Contaminated sediment is prepared by mixing synthetic fine sediment with an organic (p-terphenyl) and an inorganic chemical (chromium). The prepared contaminated sediment is treated with ultrasound and ozone nanobubbles under different operating conditions. For the samples with the maximum initial concentration of 4211 mg/kg Cr and 1875 mg/kg p-terphenyl, average removal efficiencies are 71% and 60%, respectively, with 240 min of sonication with 2-min pulses, whereas 97.5% and 91.5% removal efficiencies are obtained for the same, respectively, as a single contaminant in the sediment. For the same maximum concentrations, the highest removal of p-terphenyl is 82.7% with 127.2 J/ml high energy density, and for Cr, it is 77.1% using the highest number of the treatment cycle and ozone usage with 78.75/ml energy density. The Cr highest removal efficiency of 87.2% is recorded with the reduced initial concentration of 1227 mg/kg with the highest treatment cycles. The Cr removal efficiency depends on the availability of oxidizing agents and the number of washing cycles of sediments, whereas P-terphenyl degradation is most likely influenced by the combined effects of oxidation and ultrasound-assisted pyrolysis and combustion of organics.
Mostrar más [+] Menos [-]Strategies to reduce ammonia emissions from livestock and their cost-benefit analysis: A case study of Sheyang county Texto completo
2021
Wang, Haodan | Zhao, Zhanqing | Winiwarter, Wilfried | Bai, Zhaohai | Wang, Xuan | Fan, Xiangwen | Zhu, Zhiping | Hu, Chunsheng | Ma, Lin
Ammonia (NH₃) emissions, the majority of which arise from livestock production, are linked to high concentration of PM₂.₅ and lower air quality in China. NH₃ mitigation options were well studied at the small-scale (laboratory or pilot), however, they lack of a large-scale test in China. This study fills this crucial gap by evaluating the cost-benefit of pioneering NH₃ mitigation projects carried out for a whole county – Sheyang, Jiangsu province, China. Measures were implemented in 2019 following two distinct strategies, improved manure treatment for industrial livestock farms, and collection and central treatment for traditional livestock farms. Emission reductions of 16% were achieved in a short time. While this is remarkable, it falls short of expectations from small-scale studies. If measures were fully implemented according to purpose and meet expectations from the small scale, higher emission reductions of 42% would be possible. The cost benefit analysis presented in this study demonstrated advantages of central manure treatment over in-farm facilities. With improved implementation of mitigation strategies in industrial livestock farms, traditional livestock farms may play an increasing role in total NH₃ emissions, which means such farms either need to be included in future NH₃ mitigation policies or gradually replaced by industrial livestock farms.The study found an agricultural NH₃ reduction technology route suitable for China's national conditions (such as the “Sheyang Model”).
Mostrar más [+] Menos [-]