Refinar búsqueda
Resultados 1681-1690 de 7,351
A critical review on biochar-assisted free radicals mediated redox reactions on the transformation and reduction of potentially toxic metals: Occurrence, formation, and environmental applications Texto completo
2022
Rashid, Muhammad Saqib | Liu, Guijian | Yousaf, Balal | Hamid, Yasir | Rehman, Abdul | Arif, Muhammad | Ahmed, Rafay | Ashraf, Aniqa | Song, Yu
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Mostrar más [+] Menos [-]Anthropogenic CO2 emission reduction during the COVID-19 pandemic in Nanchang City, China Texto completo
2022
Hu, Zheng | Griffis, Timothy J. | Xia, Lingjun | Xiao, Wei | Liu, Cheng | Xiao, Qitao | Huang, Xin | Yang, Yanrong | Zhang, Leying | Hou, Bo
China is the largest CO₂ emitting country on Earth. During the COVID-19 pandemic, China implemented strict government control measures on both outdoor activity and industrial production. These control measures, therefore, were expected to significantly reduce anthropogenic CO₂ emissions. However, large discrepancies still exist in the estimated anthropogenic CO₂ emission reduction rate caused by COVID-19 restrictions, with values ranging from 10% to 40% among different approaches. Here, we selected Nanchang city, located in eastern China, to examine the impact of COVID-19 on CO₂ emissions. Continuous atmospheric CO₂ and ground-level CO observations from January 1st to April 30th, 2019 to 2021 were used with the WRF-STILT atmospheric transport model and a priori emissions. And a multiplicative scaling factor and Bayesian inversion method were applied to constrain anthropogenic CO₂ emissions before, during, and after the COVID-19 pandemic. We found a 37.1–40.2% emission reduction when compared to the COVID-19 pandemic in 2020 with the same period in 2019. Carbon dioxide emissions from the power industry and manufacturing industry decreased by 54.5% and 18.9% during the pandemic period. The power industry accounted for 73.9% of total CO₂ reductions during COVID-19. Further, emissions in 2021 were 14.3–14.9% larger than in 2019, indicating that economic activity quickly recovered to pre-pandemic conditions.
Mostrar más [+] Menos [-]Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid Texto completo
2022
Yang, Yuxian | Fang, Xiang | Chen, Mengxia | Wang, Lingyu | Xia, Jiaxin | Wang, Zicheng | Fang, Jinggui | Tran, Lam-son Phan | Shangguan, Lingfei
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of ‘Shine Muscat’ (‘SM’) grapevine seedlings were treated with CuSO₄ solution (10 mM/L), CuSO₄ + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
Mostrar más [+] Menos [-]Epigenome–wide DNA methylation signature of plasma zinc and their mediation roles in the association of zinc with lung cancer risk Texto completo
2022
Meng, Hua | Wei, Wei | Li, Guyanan | Fu, Ming | Wang, Chenming | Hong, Shiru | Guan, Xin | Bai, Yansen | Feng, Yue | Zhou, Yuhan | Cao, Qiang | Yuan, Fangfang | He, Meian | Zhang, Xiaomin | Wei, Sheng | Li, Yangkai | Kwok, Woon
Essential trace element zinc is associated with decreased lung cancer risk, but underlying mechanisms remain unclear. This study aimed to investigate role of DNA methylation in zinc-lung cancer association. We conducted a case-cohort study within prospective Dongfeng-Tongji cohort, including 359 incident lung cancer cases and a randomly selected sub–cohort of 1399 participants. Epigenome-wide association study (EWAS) was used to examine association of plasma zinc with DNA methylation in peripheral blood. For the zinc-related CpGs, their mediation effects on zinc-lung cancer association were assessed; their diagnostic performance for lung cancer was testified in the case-cohort study and further validated in another 126 pairs of lung cancer case-control study. We identified 28 CpGs associated with plasma zinc at P < 1.0 × 10⁻⁵ and seven of them (cg07077080, cg01077808, cg17749033, cg15554270, cg26125625, cg10669424, and cg15409013 annotated to GSR, CALR3, SLC16A3, PHLPP2, SLC12A8, VGLL4, and ADAMTS16, respectively) were associated with incident risk of lung cancer. Moreover, the above seven CpGs were differently methylated between 126 pairs of lung cancer and adjacent normal lung tissues and had the same directions with EWAS of zinc. They could mediate a separate 7.05%∼22.65% and a joint 29.42% of zinc-lung cancer association. Compared to using traditional factors, addition of methylation risk score exerted improved discriminations for lung cancer both in case-cohort study [area under the curve (AUC) = 0.818 vs. 0.738] and in case-control study (AUC = 0.816 vs. 0.646). Our results provide new insights for the biological role of DNA methylation in the inverse association of zinc with incident lung cancer.
Mostrar más [+] Menos [-]The respiratory cytotoxicity of typical organophosphorus flame retardants on five different respiratory tract cells: Which are the most sensitive one? Texto completo
2022
Chen, Jingyi | Li, Guiying | Yu, Hang | Liu, Hongli | An, Taicheng
Triphenyl phosphate (TPHP) is a frequently used flame retardant and indoor semi-volatile pollutant exposing humans with endocrinal disrupting effects. However, its respiratory tract toxicity remains unclear. Herein, we mainly focused on exploring the cytotoxicity of TPHP to the cells from five different parts of the human respiratory tract (from top to bottom): human nasal epithelial (HNEpC) cells, human bronchial epithelial (16HBE) cells, normal nasopharyngeal epithelial (NP69) cells, human lung epithelial cells (Beas-2B) cells, and human lung fibrocells (HFL1 cells) cells. The cell viability, micronucleus induction, endoplasmic reticulum stress gene, intracellular Ca²⁺ concentration, mitochondrial membrane potential (MMP) were investigated in short-term as well as extended exposure of TPHP. HFL1 and HNEpC cells were found to be irreversible damage, while other three type cells achieved homeostasis through self-rescue. Moreover, expression of downstream genes of Nrf2 signaling pathway were upregulated for 1.3–7.0 times and glutathione detoxification enzyme activity changed for 2–10 (U/mg protein) in HNEpC cells. Furthermore, the vascular endothelial growth factor (VEGF), a disease-related factor, increased 1.0–3.5-fold in HNEpC cells. RNA-sequencing results suggested that protein linkage recombination, molecular function regulation and metabolic processes signal pathway were all affected by TPHP exposure in HNEpC. This is a first report to compare respiratory cytotoxicity in whole human respiratory tract under OPFR exposure and found HNEpC cells were the most sensitive target of TPHP. Molecular biological mechanisms uncovered that TPHP exposure in HNEpC can induce the activation of MAPK signal pathway and demonstrate potential respiratory growth differentiation and stress disorder in human nasal cells upon TPHP exposure.
Mostrar más [+] Menos [-]Bioaccumulation and trophic transfer of organic ultraviolet absorbents in the food web of a freshwater lake: Implications for risk estimation Texto completo
2022
Lyu, Yang | Zhong, Fuyong | Tang, Zhenwu | He, Ying | Han, Xue
Organic ultraviolet absorbents (UVAs) are increasingly reported in environmental matrices and organisms. However, available information on the bioaccumulation of UVAs in freshwater species is insufficient and their trophodynamics in lake food webs remain unknown. We measured the concentrations of twelve UVAs in the wild species from Lake Chaohu. Except for UV-320 not detected, the other UVAs were prevalent in the study species and their total concentrations were in the range of 5.44–131 ng/g dry weight, which were comparable to the concentrations reported in other waters. Compound and species-specific accumulations of UVAs in the organisms were observed. In the lake, the log-transformed concentrations of 4-methyl benzylidene camphor, octyl p-dimethylaminobenzoate, UV-326, and UV-327 related significantly to the trophic levels of species separately. The calculated trophic magnification factors (TMFs) of the four UVAs were 3.79, implying trophic magnification, and 0.18, 0.40 and 0.58, suggesting trophic dilution, respectively. These suggested that the magnification potential and the associated risks of individual UVAs in freshwater lake differed. To our knowledge, this is the first report of these TMFs in lake food webs. However, more investigation is needed to characterize their trophodynamic behaviors in lakes because food web characteristics likely affect trophic transfer of these chemicals.
Mostrar más [+] Menos [-]BHPF exposure impairs mouse and human decidualization Texto completo
2022
Jin, Zhi-Yong | Liu, Cheng-Kan | Hong, Yu-Qi | Liang, Yu-Xiang | Liu, Li | Yang, Zeng-Ming
Although BHPF has been widely used in plastic manufacturing as a substitute for BPA, current evidence suggests that BHPF also causes harmful effects on reproduction. However, effects of BHPF on mammalian early pregnancy are still poorly defined. This study aimed to explore the effects of BHPF on early pregnancy, especially decidualization and embryonic development in mice and human beings. The results showed that 50 and 100 mg/kg BHPF exposure reduced birth weight, and implantation site weight on the day 8 of pregnancy in mice. Because BHPF inhibits both embryo development and artificial decidualization in mice, suggesting that the detrimental effects of BHPF should be from its effects on embryo development and decidualization. Under in vitro decidualization, 10 μM BHPF inhibits decidualization and leads to disordered expression of Lamin B1 and collagen in mice. In addition, 10 μM BHPF also inhibits decidualization, and causes disordered expression of both collagen III and Lamin B1 under human in vitro decidualization. However, collagen III supplementation can rescue BHPF inhibition on decidualization. Further, our study demonstrates that BHPF impairs human decidualization through the HB-EGF/EGFR/STAT3/Collagen III pathway. Taken together these data suggest that exposure to BHPF impairs mouse and human decidualization during early pregnancy.
Mostrar más [+] Menos [-]Assessing the emission consequences of an energy rebound effect in private cars in Israel Texto completo
2022
Steren, Aviv | Rosenzweig, Stav | Rubin, Ofir D.
The UN Sustainable Development Goal, SDG 7.3, is to double the global rate of improvement in energy efficiency by 2030. To meet this and other energy targets, countries encourage the development and adoption of energy-efficient products. An extensively researched phenomenon in this context is the energy rebound effect, especially in transportation. However, the direct relationship between the energy rebound effect and car emission levels has barely been investigated. Understanding this relationship is important, because energy-related emissions are closely linked to mortality, morbidity, and climate change. We assess the emission consequences in the private car market in Israel of a rebound effect associated with a policy promoting energy-efficient cars. We find that the baseline rebound before introduction of the policy was 40%. In the following three periods marked by policy changes, it grew to 54%, 69%, and 88%. Using household data with specific car characteristics and usage, we calculate the added greenhouse gas (GHG) emission consequences of this rebound by the end of the studied period to be about 5% of the country's per-capita target. Notably, estimates for the emission consequences using “average car” values were almost twice as high. The reason for this gap derives from the co-dependance between car usage and car efficiency. We discuss the implications of this gap in meeting emission goals.
Mostrar más [+] Menos [-]Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish Rhamdia quelen Texto completo
2022
Akiyama Kitamura, Rafael Shinji | Vicentini, Maiara | Perussolo, Maiara Carolina | Lirola, Juliana Roratto | Cirilo dos Santos, Camilla Freitas | Moreira Brito, Júlio César | Cestari, Marta Margarete | Prodocimo, Maritana Mela | Gomes, Marcelo Pedrosa | Silva de Assis, Helena Cristina
Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 μg.L⁻¹) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 μg.L⁻¹. In addition, at 100 μg.L⁻¹, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.
Mostrar más [+] Menos [-]Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge Texto completo
2022
Wang, Chuanxi | Liu, Xiaofei | Chen, Feiran | Yue, Le | Cao, Xuesong | Li, Jing | Cheng, Bingxu | Wang, Zhenyu | Xing, Baoshan
Selenium engineered nanomaterials (Se ENMs)-enabled agriculture has developed rapidly, however, the roles of surface charge in the bioavailability and enrichment efficiency of Se ENMs are still unknown. Herein, various Se ENMs of homogenous size (40–60 nm) and different surface charges (3.2 ± 0.7, −29.0 ± 0.4, and 45.5 ± 1.3 mV) were prepared to explore the Se content and nutritional quality in Brassica chinensis L. The results demonstrated that soil application of various Se ENMs (0.05 mg kg⁻¹) displayed different bio-availabilities via modulating the secretion of root exudates (e.g., tartaric, malic, and citric acids), microbial community composition (e.g., Flavobacterium, Pseudomonas, Paracoccus, Bacillus and Rhizobium) and root cell wall. Negatively charged Se ENMs (Se (−)) showed the highest Se content in the shoot of B. chinensis (3.7-folds). Se (−) also significantly increased yield (156.9%) and improved nutritional quality (e.g., ascorbic acid, amino acids, flavonoids, fatty acids, and tricarboxylic acid) of B. chinensis. Moreover, after harvest, the Se (−) did not lead to significant change in Se residue in soil, but the amount of Se residue in soil was increased by 5.5% after applying the traditional Se fertilizer (selenite). Therefore, this study provides useful information for producing Se-fortified agricultural products, while minimizing environmental risk.
Mostrar más [+] Menos [-]