Refinar búsqueda
Resultados 1701-1710 de 8,010
Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration Texto completo
2021
Nan, Hongyan | Yin, Jianxiang | Yang, Fan | Luo, Ying | Zhao, Ling | Cao, Xinde
Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C₂–C₇) via physical blocking (CaO, CaCO₃, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.
Mostrar más [+] Menos [-]Xenopus in revealing developmental toxicity and modeling human diseases Texto completo
2021
Gao, Juanmei | Shen, Wanhua
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Mostrar más [+] Menos [-]Sulfur deficiency exacerbates phytotoxicity and residues of imidacloprid through suppression of thiol-dependent detoxification in lettuce seedlings Texto completo
2021
Zhang, Nan | Huang, Lin | Zhang, Yuxue | Liu, Lijuan | Sun, Chengliang | Lin, Xianyong
Sulfur, an essential macronutrient, plays important roles in plant development and stress mitigation. Sulfur deficiency, a common problem in agricultural soils, may disturb plant stress resistance and xenobiotic detoxification. In the present study, the function and mechanism of limited sulfur nutrition on the residues and phtotoxicity of imidacloprid were investigated in lettuce plants. Sulfur deficiency significantly increased imidacloprid accumulation in lettuce tissues, exacerbated imidacloprid biological toxicity by enhancing the accumulation of toxic metabolites, like imidacloprid-olefin. Simultaneously, imidacloprid-induced detoxification enzymes including cytochromes P450, glutathione S-transferases (GSTs) and glycosyltransferases were inhibited under limited sulfur supply. On the other hand, sulfur deficiency further enhanced the generation of reactive oxygen species and exacerbated lipid peroxidation in lettuce tissues. Sulfur deficiency mainly reduced the abundance of thiol groups, which are essential redox modulators as well as xenobiotic conjugators, and significantly inhibited GSTs expression. These results clearly suggested that sulfur deficiency inhibited the synthesis of sulfur-containing compounds, leading to increased accumulation of pesticide residues and toxic metabolites as well as reduced detoxification capacity, consequently leading to oxidative damage to plants. Therefore, moderate sulfur supply in regions where neonicotinoid insecticides are intensively and indiscriminately used may be an efficient strategy to reduce pesticide residues and the potential risk to ecosystem.
Mostrar más [+] Menos [-]Using soil erosion to locate nonpoint source pollution risks in coastal zones: A case study in the Yellow River Delta, China Texto completo
2021
Wang, Youxiao | Liu, Gaohuan | Zhao, Zhonghe | Wu, Chunsheng | Yu, Bowei
Soil erosion contributes greatly to nonpoint source pollution (NSP). We built a coastal NSP risk calculation method (CNSPRI) based on the Revised Universal Soil Loss Equation (RUSLE) and geospatial methods. In studies on the formation and transport of coastal NSP, we analysed the pollution impacts on the sea by dividing subbasins into the sea and monitoring the pollutant flux. In this paper, a case study in the Yellow River Delta showed that the CNSPRI could better predict the total nitrogen (TN) and total phosphorus (TP) NSP risks. The value of the soil erodibility factor (K) was 0.0377 t h·MJ⁻¹·mm⁻¹, indicating higher soil erodibility levels, and presented an increased trend from the west to the east coast. The NSP risk also showed an increased trend from west to east, and the worst status was found near the Guangli River of the south-eastern region. The contributions of the seven influencing factors to CNSPRI presented an order of vegetation cover > rainfall erosivity > soil content > soil erodibility > flow > flow path > slope. The different roles of source and sink landscapes influenced the pollutant outputs on a subbasin scale. Arable land and saline-alkali land were the two land-use types with the greatest NSP risks. Therefore, in coastal zones, to reduce NSP output risks, we should pay more attention to the spatial distribution of vegetation cover, increase its interception effect on soil loss, and prioritize the improvement of saline-alkali land to reduce the amount of bare land.
Mostrar más [+] Menos [-]Emission characteristics and assessment of odors from sludge anaerobic digestion with thermal hydrolysis pretreatment in a wastewater treatment plant Texto completo
2021
Han, Zhangliang | Li, Ruoyu | Shen, Hanzhang | Qi, Fei | Liu, Baoxian | Shen, Xiue | Zhang, Lin | Wang, Xiaoju | Sun, Chuanfeng
Anaerobic digestion (AD) with thermal hydrolysis pre-treatment (THP) is an effective sludge treatment method which provides several advantages such as enhanced biogas formation and fertilizer production. The main limitation to THP-AD is that hazardous odors, including NH₃ and volatile sulfur compounds (VSCs), are emitted during the sludge treatment process. In order to develop strategies to eliminate odors, it is necessary to identify the key odors and emissions sites. This study identified production of NH₃ (741.60 g·dry sludge t⁻¹) and VSCs (277.27 g·dry sludge t⁻¹) during sludge AD after THP, and measured emissions in each of the THP-AD sludge treatment sites. Odor intensity, odor active values, permissible concentration-time weighted average, and non-carcinogenic risks were also assessed in order to determine the sensory impact, odor contribution, and health impacts of NH₃ and VSCs. The results revealed that odor pollution existed in all of the test sites, particularly in the sludge pump room and pre-dehydration workshop. NH₃, H₂S, and methyl mercaptan caused very strong odors, and levels of NH₃ and H₂S were enough to impact the health of on-site employees.
Mostrar más [+] Menos [-]Organic-matter decomposition as a bioassessment tool of stream functioning: A comparison of eight decomposition-based indicators exposed to different environmental changes Texto completo
2021
Ferreira, Verônica | Silva, João | Cornut, Julien | Sobral, Olímpia | Bachelet, Quentin | Bouquerel, Jonathan | Danger, Michael
Organic-matter decomposition has long been proposed as a tool to assess stream functional integrity, but this indicator largely depends on organic-matter selection. We assessed eight decomposition-based indicators along two well-known environmental gradients, a nutrient-enrichment gradient (0.2–1.4 mg DIN/L) in central Portugal and an acidification gradient (pH: 4.69–7.33) in north-eastern France to identify the most effective organic-matter indicator for assessing stream functional integrity. Functional indicators included natural leaf litter (alder and oak) in 10-mm and 0.5-mm mesh bags, commercial tea (Lipton green and rooibos teas in 0.25-mm mesh bags), wood sticks (wood tongue depressors) and cotton strips. Biotic indices based on benthic macroinvertebrates (IPtIN for Portugal and IBGN for France) were calculated to compare the effectiveness of structural and functional indicators in detecting stream impairment and to assess the relationship between both types of indicators. The effectiveness of organic-matter decomposition rates as a functional indicator depended on the stressor considered and the substrate used. Decomposition rates generally identified nutrient enrichment and acidification in the most acidic streams. Decomposition rates of alder and oak leaves in coarse-mesh bags, green and rooibos teas and wood sticks were positively related with pH. Only decomposition rates of rooibos tea and wood sticks were related with DIN concentration; decomposition rates along the nutrient-enrichment gradient were confounded by differences in shredder abundance and temperature among streams. Stream structural integrity was good to excellent across streams; the IPtIN index was unrelated to DIN concentration, while the IBGN index was positively related with pH. The relationships between decomposition rates and biotic indices were loose in most cases, and only decomposition rates of alder leaves in coarse-mesh bags and green tea were positively related with the IBGN. Commercial substrates may be a good alternative to leaf litter to assess stream functional integrity, especially in the case of nutrient enrichment.
Mostrar más [+] Menos [-]Is water quality better in wet years or dry years in river-connected lakes? A case study from Dongting Lake, China Texto completo
2021
Geng, Mingming | Wang, Kelin | Yang, Nan | Qian, Zhan | Li, Feng | Zou, Yeai | Chen, Xinsheng | Deng, Zhengmiao | Xie, Yonghong
Water quality is essential for lake systems, which are not only influenced by climate change and human activities but are also controlled by high-frequency hydrological rhythms. However, the differences in water quality during different hydrological periods have not been addressed in detail. Here, a 15-year water quality dataset (2004–2018) was selected to explore the variation trends and their relationship with water level in different hydrological periods in Dongting Lake, a typical river-connected lake in China. The hydrological periods were classified into hydrological years and hydrological phases based on the characteristics of water level fluctuations. The results showed that annual variation in the water level in Dongting Lake fluctuated between 23.63 and 25.81 m from 2004 to 2018, and also displayed considerable water level differences ranging from 7.66 m (dry years) to 9.97 m (wet years) within a year. The water level of the lake phase showed significant differences among the different hydrological years. The concentration of TP, CODMₙ, and NH₃-N showed significant decreasing trends, whereas that of TN showed a significant increasing trend from 2004 to 2018. The TN concentration in wet years was significantly higher than that in dry years, which could be attributed to sewage discharge and hydrological conditions. The contributions of the lake phase to the total sewage discharge successively decreased from 64.54% in wet years to 59.47% in dry years, while the river phase showed the opposite trends, ranging from 35.46% to 40.53%, reflecting the strong relationship between water regimes and pollutant fluxes. A regression analysis indicated the different responses of water quality to water level fluctuations over hydrological years, and water quality in different hydrological phases clearly separated the lake and river phases, highlighting the influence of water level fluctuations on water quality within a year. To maintain the water quality of Dongting Lake, the control of external load should not be relaxed, and hydrological regulation should be actively carried out within each year.
Mostrar más [+] Menos [-]Quercetin antagonizes imidacloprid-induced mitochondrial apoptosis through PTEN/PI3K/AKT in grass carp hepatocytes Texto completo
2021
Miao, Zhiruo | Miao, Zhiying | Wang, Shengchen | Shi, Xu | Xu, Shiwen
Imidacloprid (IMI) is widely used in agriculture, and is toxic to non-target aquatic species. Quercetin (Que) is a flavonoid abundant in fruits and vegetables that exhibits anti-oxidant activity. In the present study, we treated grass carp hepatocytes (L8824) with 0.1 μM Que and/or 1 mM IMI for 24 h to explore the effect of Que on IMI-induced mitochondrial apoptosis. We found that IMI exposure enhanced reactive oxygen species (ROS) generation, inhibiting the activities of SOD, CAT and T-AOC, exacerbating the accumulation of MDA, aggravating the expression of mitochondrial apoptosis pathway (Cyt-C, BAX, Caspase9 and Caspase3) related genes and decreased the expression of anti-apoptosis gene B-cell lymphoma-2 (Bcl-2). In addition, Que and IMI co-treatment significantly restored the activity of anti-oxidant enzymes, downregulated ROS level and apoptosis rate, thereby alleviating the depletion of mitochondrial membrane potential (ΔΨm) and the expression of cytochrome c (Cyt-C), Bcl-2-associated X (BAX), and cysteinyl aspartate specific proteinases (Caspase9 and 3), increasing the Bcl-2 level. Furthermore, we elucidated that Que could inhibit the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), thus activating phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway to attenuate IMI-induced apoptosis. Molecular docking provides assertive evidence for the interaction between Que ligand and PTEN receptor. Consequently, these results indicate that Que effectively antagonizes IMI-induced mitochondrial apoptosis in grass carp hepatocytes via regulating the PTEN/PI3K/AKT pathway.
Mostrar más [+] Menos [-]Heavy metal fixation of lead-contaminated soil using Morchella mycelium Texto completo
2021
Wang, Yazhou | Tan, Renhao | Zhou, Li | Lian, Jie | Wu, Xudong | He, Rong | Yang, Fan | He, Xinsheng | Zhu, Wenkun
With the exploitation of lead-zinc deposits, lead content around mining areas has seriously exceeded the recommended level. The most challenging problem is how to reduce lead contamination in soil efficiently. In this study, we developed a method to remediate lead-contaminated soil by adding Morchella mycelium. First, we compared the repair effects of mycelium and hyperaccumulator by conducting pot experiments. Then, we investigated the mechanism through which mycelium repairs lead-contaminated soil by conducting simulation experiments. Results showed that using mycelium was a more efficient way to repair soil than using hyperaccumulator. Compared with the untreated group, mycelium reduced the lead content of crops by 34.83 % and raised dry biomass by 134.05 % when lead addition was 800 mg/kg. After mycelium fixation, soil catalase, urease, cellulase, and sucrase activities were significantly enhanced, and the bioavailability of lead decreased significantly. The lead solution exposure simulation test showed that Morchella mycelium immobilized lead due to its extracellular secretions. That is, mycelium secreted metabolites and lead to form salt crystals, reducing bioavailable lead content. In addition, Morchella mycelium restoration may effectively improve soil fertility and increase crop yields. Thus, mycelium may be used successfully in alternative green repair methods for environmental heavy metal remediation.
Mostrar más [+] Menos [-]Perfluorooctane sulfonate alternatives and metabolic syndrome in adults: New evidence from the Isomers of C8 Health Project in China Texto completo
2021
Yu, Shu | Feng, Wen-Ru | Liang, Zi-Mian | Zeng, Xiao-Yun | Bloom, Michael S. | Hu, Guo-Cheng | Zhou, Yang | Ou, Yan-Qiu | Chu, Chu | Li, Qing-Qing | Yu, Yunjiang | Zeng, Xiao-Wen | Dong, Guang-Hui
Chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), are ubiquitous alternatives to perfluorooctane sulfonate (PFOS), a widely used poly- and perfluoroalkyl substance (PFAS). Despite in vivo and in vitro evidence of metabolic toxicity, no study has explored associations of Cl-PFESAs concentrations with metabolic syndrome (MetS) in a human population. To help address this data gap, we quantified 32 PFAS, including 2 PFOS alternative Cl-PFESAs (6:2 and 8:2 Cl-PFESAs) in serum from 1228 adults participating in the cross-sectional Isomers of C8 Health Project in China study. The odds ratios (ORs) and 95% confidence intervals (CIs) of MetS and its various components were estimated using individual PFAS as a continuous or categorical predictor in multivariate regression models. The association between the overall mixture of PFAS and MetS was examined using probit Bayesian Kernel Machine Regression (BKMR-P). Greater serum PFAS concentrations were associated with higher odds of MetS and demonstrated a statistically significant dose-response trend (P for trend < 0.001). For example, each ln-unit (ng/mL) increase in serum 6:2 Cl-PFESA was associated with a higher prevalence of MetS (OR = 1.52, 95% CI: 1.25, 1.85). MetS was also 2.26 (95% CI: 1.59, 3.23) times more common in the highest quartile of serum 6:2 Cl-PFESA concentration than the lowest, and particularly high among women (OR = 6.41, 95% CI: 3.65, 11.24). The BKMR-P analysis showed a positive association between the overall mixture of measured PFAS and the odds of MetS, but was only limited to women. While our results suggest that exposure to Cl-PFESAs was associated with MetS, additional longitudinal studies are needed to more definitively address the potential health concerns of these PFOS alternatives.
Mostrar más [+] Menos [-]