Refinar búsqueda
Resultados 1741-1750 de 7,995
Enhanced control of sulfonamide resistance genes and host bacteria during thermophilic aerobic composting of cow manure Texto completo
2021
Sardar, Muhammad Fahad | Zhu, Changxiong | Geng, Bing | Huang, Yali | Abbasi, Bilawal | Zhang, Zhiguo | Song, Tingting | Li, Hongna
Traditional composting has already shown a certain effect in eliminating antibiotic residues, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). It is worth noting that the rebounding of ARGs and the succession of the bacterial community during conventional aerobic composting are still serious threats. Considering the probable risk, improved and adaptable technologies are urgently needed to control antibiotic resistance efficiently. This study monitored how thermophilic aerobic composting affected the ARGs, as well as the bacterial diversity during the composting of cow manure spiked with sulfamethoxazole (SMX) at different concentrations. Results showed that the degradation of SMX was enhanced during thermophilic aerobic composting (control > SMX25 > SMX50 > SMX100) and was no longer detected after 20 days of composting. High temperature or heat significantly stimulated the rebounding of certain genes. After 35 days, the abundance of detected genes (sul2, sulA, dfrA7, and dfrA1) significantly decreased (p < 0.05) in control and antibiotic-spiked treatments, except for sul1. The addition of three concentrations of SMX elicited a sharp effect on bacterial diversity, and microbial structure in SMX25 led to significant differences with others (p < 0.05). The network analysis revealed more rigorous interactions among ARGs and abundant genera, suggesting that the host of ARGs potentially increased at low concentrations of SMX. Especially, genera g_norank_f__Beggiatoaceae, Ruminiclostridium, Caldicoprobacter, g_norank_o_MBA03, Hydrogenispora, and Ruminiclostridium_1 were major potential hosts for sul1. In conclusion, the rebounding of ARGs could be intermitted partially, and more efficient control of antibiotic resistance could be achieved in the thermophilic composting compared to conventional methods.
Mostrar más [+] Menos [-]Interspecific and intraspecific variation in organochlorine pesticides and polychlorinated biphenyls using non-destructive samples from Pygoscelis penguins Texto completo
2021
Souza, Juliana Silva | Pacyna-Kuchta, Aneta Dorota | Teixeira da Cunha, Larissa Schmauder | Costa, Erli Schneider | Niedzielski, Przemysław | Machado Torres, João Paulo
As humans are present in Antarctica only for scientific and tourism-related purposes, it is often described as a pristine region. However, studies have identified measurable levels of Persistent Organic Pollutants (POPs), such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), in the Antarctic region. These are highly toxic anthropogenic compounds with tendency to travel long distances and reach remote environments, where they can bioaccumulate in the biota. Penguins are exposed to POPs mainly through their diet, which they partially eliminate via feathers. Species of the genus Pygoscelis occur around Antarctic continent and its surrounding regions, and can act as indicators of contaminants that reach the continent. Here, we report OCP and PCB levels in feathers of male and female penguins of P. adeliae, P. antarcticus and P. papua from King George Island, South Shetland Islands, Antarctica. Interspecific, sex- and body-size-related differences were investigated in the contamination profiles of PCBs and OCPs. Feather samples were collected from adult penguins (n = 41). Quantification of compounds was performed by gas chromatography-tandem mass spectrometry. The three Pygoscelis species presented similar contamination profiles, with higher concentrations of dichlorodiphenyltrichloroethane (∑DDT; 1.56–3.82 ng g⁻¹ dw), lighter PCB congeners (∑PCB: 11.81–18.65 ng g⁻¹ dw) and HCB (hexachlorobenzene: 1.65–4.06 ng g⁻¹ dw). Amongst the three penguin species, P. antarcticus had lower and P. papua higher concentrations of most of the compounds identified. We found interspecific differences in POPs accumulation as well as sex differences in POP concentrations. Our data indicate a small but significant positive correlation between body size and the concentrations of some compounds. Despite the overall low concentrations found, this study increases knowledge of the occurrence of POPs in Antarctic penguins, thereby reinforcing concerns that Antarctica, although remote and perceived to be protected, is not free from the impact of anthropogenic pollutants.
Mostrar más [+] Menos [-]Short-term personal PM2.5 exposure and change in DNA methylation of imprinted genes: Panel study of healthy young adults in Guangzhou city, China Texto completo
2021
Liang, Yaohui | Hu, Liwen | Li, Jun | Liu, Fei | Jones, K. C. (Kevin C.) | Li, Daochuan | Liu, Jing | Chen, Duohong | Yau, Ching | Yu, Zhiqiang | Zhang, Gan | Dong, Guanghui | Ma, Huimin
DNA methylation (DNAm) plays a significant role in deleterious health effects inflicted by fine particulate matter (PM₂.₅) on the human body. Recent studies have reported that DNAm of imprinted control regions (ICRs) in imprinted genes may be a sensitive biomarker of environmental exposure. Less is known about specific biomarkers of imprinted genes after PM₂.₅ exposure. The relationship between PM₂.₅ and its chemical constituents and DNAm of ICRs in imprinted genes after short-term exposure was investigated to determine specific human biomarkers of its adverse health effects. A panel study was carried out in healthy young people in Guangzhou, China. Mixed-effects models were used to evaluate the influence of PM₂.₅ and its constituent exposure on DNAm while controlling for potential confounders. There was no significant correlation between DNAm and personal PM₂.₅ exposure mass. DNAm changes in eight ICRs (L3MBTL1, NNAT, PEG10, GNAS Ex1A, MCTS2, SNURF/SNRPN, IGF2R, and RB1) and a non-imprinted gene (CYP1B1) were significantly associated with PM₂.₅ constituents. Compared to non-imprinted genes, imprinted gene methylation was more susceptible to interference with PM₂.₅ constituent exposure. Among those genes, L3MBTL1 was the most sensitive to personal PM₂.₅ constituent exposure. Moreover, transition metals derived from traffic sources (Cd, Fe, Mn, and Ni) significantly influenced DNAm of the imprinted genes, suggesting the importance of more targeted measures to reduce toxic constituents. Bioinformatics analysis indicated that imprinted genes (RB1) may be correlated with pathways and diseases (non-small cell lung cancer, glioma, and bladder cancer). The present study suggests that screening the imprinted gene for DNAm can be used as a sensitive biomarker of PM₂.₅ exposure. The results will provide data for prevention of PM₂.₅ exposure and a novel perspective on potential mechanisms on an epigenetic level.
Mostrar más [+] Menos [-]Prenatal exposure to mixtures of persistent endocrine disrupting chemicals and early menarche in a population-based cohort of British girls Texto completo
2021
Marks, Kristin J. | Howards, Penelope P. | Smarr, Melissa M. | Flanders, W Dana | Northstone, Kate | Daniel, Johnni H. | Calafat, Antonia M. | Sjödin, Andreas | Marcus, Michele | Hartman, Terryl J.
Exposure to endocrine disrupting chemicals (EDCs) is ubiquitous. EDC exposure, especially during critical periods of development like the prenatal window, may interfere with the body’s endocrine system, which can affect growth and developmental outcomes such as puberty. Most studies have examined one EDC at a time in relation to disease; however, humans are exposed to many EDCs. By studying mixtures, the human experience can be more closely replicated. We investigated the association of prenatal exposure to persistent EDCs (poly- and perfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs)) as mixtures with early menarche among female offspring in a nested case-control study within the Avon Longitudinal Study of Parents and Children (ALSPAC) recruited in the United Kingdom in 1991–1992. Concentrations of 52 EDCs were quantified in maternal serum samples collected during pregnancy. Daughter’s age at menarche was ascertained through mailed questionnaires sent annually. We used repeated holdout weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) to examine the association between prenatal exposure to multiple EDCs and early menarche (<11.5 (n = 218) vs. ≥11.5 years (n = 230)) for each chemical class separately (PFAS, PCBs, and OCPs) and for all three classes combined. Models adjusted for maternal age at menarche, maternal education, parity, pre-pregnancy body mass index, maternal age, prenatal smoking, and gestational week at sample collection. Mixture models showed null associations between prenatal exposure to EDC mixtures and early menarche. Using WQS regression, the odds ratio for early menarche for a one-decile increase in chemical concentrations for all three classes combined was 0.89 (95% CI: 0.76, 1.05); using BKMR, the odds ratio when all exposures were at the 60th percentile compared to the median was 0.98 (95% CI: 0.91, 1.05). Results suggest the overall effect of prenatal exposure to persistent EDC mixtures is not associated with early menarche.
Mostrar más [+] Menos [-]Hotspots of reactive nitrogen loss in China: Production, consumption, spatiotemporal trend and reduction responsibility Texto completo
2021
Luo, Zhibo | Liang, Xia | Lam, Shu Kee | Mosier, Arvin R. | Hu, Shanying | Chen, Deli
Effective and fair mitigation measures hinge on the identification of hotspots and tracking provenance on reactive nitrogen (Nr) loss at a high spatial resolution. We assessed the Nr loss intensity in China at 1 km spatial resolution from 1980 to 2015. The total Nr loss increased from 20.2 to 54.5 Tg N yr⁻¹, with hotspots (>100 kg N ha⁻¹ yr⁻¹) concentrated in the North China Plain, the Middle and Lower Yangtze River and the Sichuan Basin. The Nr loss hotspots covered less than 20% of the Chinese territory but contributed more than 90% of total Nr loss since 1990. Geographical disparity in Nr loss has increased and calls for a fair regional policy synergy. Compared to managing Nr loss based only on production, we demonstrate that the estimation of Nr loss responsibility driven by consumption has greater potential to allocate a fair share of responsibility for reducing Nr loss.
Mostrar más [+] Menos [-]Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? Texto completo
2021
Chen, Bo | Han, Jie | Dai, Han | Jia, Puqi
During the current pandemic, chemical disinfectants are ubiquitously and routinely used in community environments, especially on common touch surfaces in public settings, as a means of controlling the virus spread. An underappreciated risk in current regulatory guidelines and scholarly discussions, however, is that the persisting input of chemical disinfectants can exacerbate the growth of biocide-tolerant and antibiotic-resistant bacteria on those surfaces and allow their direct transfers to humans. For COVID-19, the most commonly used disinfecting agents are quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite, and ethanol, which account for two-thirds of the active ingredients in current EPA-approved disinfectant products for the novel coronavirus. Tolerance to each of these compounds, which can be either intrinsic or acquired, has been observed on various bacterial pathogens. Of those, mutations and horizontal gene transfer, upregulation of efflux pumps, membrane alteration, and biofilm formation are the common mechanisms conferring biocide tolerance in bacteria. Further, the linkage between disinfectant use and antibiotic resistance was suggested in laboratory and real-life settings. Evidence showed that substantial bacterial transfers to hands could effectuate from short contacts with surrounding surfaces and further from fingers to lips. While current literature on disinfectant-induced antimicrobial resistance predominantly focuses on municipal wastes and the natural environments, in reality the community and public settings are most severely impacted by intensive and regular chemical disinfecting during COVID-19 and, due to their proximity to humans, biocide-tolerant and antibiotic-resistant bacteria emerged in these environments may pose risks of direct transfers to humans, particularly in densely populated urban communities. Here we highlight these risk factors by reviewing the most pertinent and up-to-date evidence, and provide several feasible strategies to mitigate these risks in the scenario of a prolonging pandemic.
Mostrar más [+] Menos [-]Evaluating the genesis and dominant processes of groundwater salinization by using hydrochemistry and multiple isotopes in a mining city Texto completo
2021
Chen, Xing | Jiang, Chunlu | Zheng, Liugen | Zhang, Liqun | Fu, Xianjie | Chen, Shigui | Chen, Yongchun | Hu, Jie
The increasing salinization of groundwater renders it challenging to maintain the water quality. Moreover, knowledge regarding the characteristics and mechanism of groundwater salinization in mining areas remains limited. This study represents the first attempt of combining the hydrochemical, isotope (δD, δ¹⁸O, δ³⁷Cl, and ⁸⁷Sr/⁸⁶Sr) and multivariate statistical analysis methods to explore the origin, control, and influence of fluoride enrichment in mining cities. The TDS content of groundwater ranged from 275.9 mg/L to 2452.0 mg/L, and 54% of the groundwater samples were classified as class IV water according to China's groundwater quality standards (GB/T 14848–2017), indicating a decline in the water quality of the study area. The results of the groundwater ion ratio and isotope discrimination analysis showed that dissolution and evaporation involving water-rock interactions and halite were the main driving processes for groundwater salinization in the study area. In addition to the hydrogeological and climatic conditions, mine drainage inputs exacerbated the increasing salinity of the groundwater in local areas. The mineral dissolution, cation exchange, and evaporation promoted the F⁻ enrichment, while excessive evaporation and salinity inhibited the F⁻ enrichment. Gangue accumulation and infiltration likely led to considerable F⁻ enrichment in individual groundwater regions. Extensive changes in the groundwater salinity indicated differences in the geochemical processes that controlled the groundwater salinization. Given the particularity of the study area, the enrichment of salinization and fluoride triggered by mining activities cannot be ignored.
Mostrar más [+] Menos [-]A novel method for organic matter removal from samples containing microplastics Texto completo
2021
Lavoy, Mercedes | Crossman, Jill
Sludge and biosolids from wastewater treatment plants (WWTPs), identified as important pathways through which microplastics (MPs) can enter the wider environment, contain high organic content, which can obstruct MP quantification/identification. Time- and cost-effective removal of organics is a significant barrier to MP analysis. This study aims to alleviate these obstacles using a widely available store-bought septic tank cleaner, comprised of enzymes and bacteria. The cleaner was added to sludge samples, obtained from a local WWTP. Digestion was tested across a range of cleaner concentrations and heat treatments, and compared to a control digestion without cleaner. Organic content of samples digested with cleaner was reduced by 93%, representing a 22% greater reduction compared to control samples. Virgin plastic pellets, of a variety of polymers, were subjected to the digestion process and underwent no physical or chemical changes, demonstrating this method does not degrade MPs. As all enzymes were added in a single step, the time required for enzymatic digestion using the cleaner was only two days. Compared to existing methods, which take up to several weeks, this novel enzymatic digestion method offers a viable means of extracting MPs from organic materials without either the long processing times required of chemical (solely Fenton's) methods or high cost of laboratory grade enzyme approaches.
Mostrar más [+] Menos [-]A model for population exposure to PM2.5: Identification of determinants for high population exposure in Seoul Texto completo
2021
Guak, Sooyoung | Lee, Sang-Gyu | An, Jaehoon | Lee, Hunjoo | Lee, Kiyoung
Outdoor concentrations of particulate matter with an aerodynamic diameter of <2.5 μm (PM₂.₅) are often used as a surrogate for population exposure to PM₂.₅ in epidemiological studies. However, people spend most of their daily activities indoors; therefore, the relationship between indoor and outdoor PM₂.₅ concentrations should be considered in the estimation of population exposure to PM₂.₅. In this study, a population exposure model was developed to predict seasonal population exposure to PM₂.₅ in Seoul, Korea. The input data for the population exposure model comprised 3984 time-location patterns, outdoor PM₂.₅ concentrations, and the microenvironment-to-outdoor PM₂.₅ concentrations in seven microenvironments. A probabilistic approach was used to develop the Korea simulation exposure model. The determinants for the population exposure group were identified using a multinomial logistic regression analysis. Population exposure to PM₂.₅ varied significantly among the three seasons (p < 0.01). The mean ± standard deviation of population exposures to PM₂.₅ was 21.3 ± 4.0 μg/m³ in summer, 9.8 ± 2.7 μg/m³ in autumn, and 29.9 ± 10.6 μg/m³ in winter. Exposure to PM₂.₅ higher than 35 μg/m³ mainly occurred in winter. Gender, age, working hours, and health condition were identified as significant determinants in the exposure groups. An “unhealthy” health condition was the most significant determinant. The high PM₂.₅ exposure group was characterized as a higher proportion of males of a lower age with longer working hours. The population exposure model for PM₂.₅ could be used to implement effective interventions and evaluate the effectiveness of control policies to reduce exposure.
Mostrar más [+] Menos [-]Spatial patterning of chlorophyll a and water-quality measurements for determining environmental thresholds for local eutrophication in the Nakdong River basin Texto completo
2021
Kim, Hyo Gyeom | Hong, Sungwon | Chon, Tae Soo | Joo, Gea-Jae
Management of water-quality in a river ecosystem needs to be focused on susceptible regions to eutrophication based on proper measurements. The stress–response relationships between nutrients and primary productivity of phytoplankton allow the derivation of ecologically acceptable thresholds of stressors under field conditions. However, spatio-temporal variations in heterogeneous environmental conditions have hindered the development of locally applicable criteria. To address these issues, we utilized a combination of a geographically specialized artificial neural network (Geo-SOM, geo-self-organizing map) and linear mixed-effect models (LMMs). The model was applied to a 24-month dataset of 54 stations that spanned a wide spatial gradient in the Nakdong River basin. The Geo-SOM classified 1286 observations in the basin into 13 clusters that were regionally and seasonally distinct. Inclusion of the random effects of Geo-SOM clustering improved the performance of each LMM, which suggests that there were significant spatio-temporal variations in the Chla–stressor relationships. These variations arise owing to differences in background seasonality and the effects of local pollutant variables and land-use patterns. Among the 16 environmental variables, the major stressors for Chla were total phosphate (TP) as a nutrient and biological oxygen demand (BOD) as a non-nutrient according to the results of both Geo-SOM and LMM analyses. Based on LMMs with the random effect of the Geo-SOM clusters on the intercept and the slope, we can propose recommended thresholds for TP (18.5 μg L⁻¹) and BOD (1.6 mg L⁻¹) in the Nakdong River. The combined method of LMM and Geo-SOM will be useful in guiding appropriate local water-quality-management strategies and in the global development of large-scale nutrient criteria.
Mostrar más [+] Menos [-]