Refinar búsqueda
Resultados 1741-1750 de 7,214
The behavior of organic sulfur species in fuel during chemical looping gasification
2022
Wang, Lulu | Shen, Laihong | Long, Yuyang | Shen, Dongsheng | Jiang, Shouxi
Uncoupling chemical looping gasification (CLG), the organic sulfur evolution was simulated and explored qualitatively and quantitatively using typical sulfur compounds on TG-MS and temperature-programmed fixed bed. The HS radical in the reductive atmosphere easier converted to H₂S and COS. H₂O activated the evolution of S which was stably bonded to carbon, and H₂ generated from gasification and oxidation of reductive Fe by H₂O contributed to the release of sulfur. The proportion of H₂S released from sulfur compounds was greater than 87% in steam gasification, and more than 60% during CLG. Oxygen carriers promoted the conversion of sulfur to SO₂ in the mid-temperature region (500 °C–700 °C), and H₂S in the high temperature region (700 °C–900 °C). Sulfur species played a pivotal role in sulfur evolution at low temperature of CLG. The organic sulfur in mercaptan and benzyl were more easily converted and escaped than in thiophene and phenyl. The thermal stability of sulfur species, the presence of steam and OC affected the initial temperature and peak concentration of gas sulfur release as well as sulfur distribution. Consequently, CLG strengthened the sulfur evolution, and made it possible to targeted restructure the distribution of sulfur by regulating process parameters, or blending fuel with different sulfur species for emission reduction, and selective conversion of sulfur.
Mostrar más [+] Menos [-]Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination
2022
Alayande, Abayomi Babatunde | Hong, Seungkwan
The use of membrane-based technology has evolved into an important strategy for supplying freshwater from seawater and wastewater to overcome the problems of water scarcity around the world. However, the presence of natural organic matter (NOM), including humic substances affects the performance of the process. Here, we present a systematic report on the mineralization of humic acid (HA), as a model for NOM, in high concentration of salts using the ultraviolet light-activated peroxymonosulfate (UV/PMS) system as a potential alternative for HA elimination during membrane-based seawater desalination and water treatment processes. Effects of various parameters such as PMS concentration, solution type, pH, anions, and anion-cation matrix on HA mineralization were assessed. The results show that 100%, 78% and 58% of HA (2 mg/L TOC) were mineralized with rate constants of 0.085 min⁻¹, 0.0073 min⁻¹, and 0.0041 min⁻¹ after 180 min reaction time at pH 7 when 0.5 mM PMS was used in deionized water, sodium chloride solution (35,000 ppm) and synthetic seawater, respectively. The reduced efficiency under saline conditions was attributed to the presence of anions in the system that acted as sulfate and hydroxyl radicals’ scavengers. Furthermore, the safety of the treated synthetic seawater was evaluated by analyzing the residual transformed products. Overall, pretreatment with the UV/PMS system mitigated fouling on the RO membrane.
Mostrar más [+] Menos [-]Effects of soil protists on the antibiotic resistome under long term fertilization
2022
Li, Hong-Zhe | Zhu, Dong | Sun, An-Qi | Qin, Yi-Fei | Lindhardt, Jonathan Hessner | Cui, Li
Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers.
Mostrar más [+] Menos [-]Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects
2022
Okeke, Emmanuel Sunday | Ezeorba, Timothy Prince Chidike | Mao, Guanghua | Chen, Yao | Feng, Weiwei | Wu, Xiangyang
Nanotechnology is a rapidly developing technology that will have a significant impact on product development in the next few years. The technology is already being employed in cutting-edge cosmetic and healthcare products. Nanotechnology and nanoparticles have a strong potential for product and process innovation in the food industrial sector. This is already being demonstrated by food product availability made using nanotechnology. Nanotechnologies will have an impact on food security, packaging materials, delivery systems, bioavailability, and new disease detection materials in the food production chain, contributing to the UN Millennium Development Goals targets. Food products using nanoparticles are already gaining traction into the market, with an emphasis on online sales. This means that pre- and post-marketing regulatory frameworks and risk assessments must meet certain standards. There are potential advantages of nanotechnologies for agriculture, consumers and the food industry at large as they are with other new and growing technologies. However, little is understood about the safety implications of applying nanotechnologies to agriculture and incorporating nanoparticles into food. As a result, policymakers and scientists must move quickly, as regulatory systems appear to require change, and scientists should contribute to these adaptations. Their combined efforts should make it easier to reduce health and environmental impacts while also promoting the economic growth of nanotechnologies in the food supply chain. This review highlighted the benefits of a number of nano enabled agrochemicals/materials, the potential health impacts as well as the risk assessment and risk management for nanoparticles in the agriculture and food production chain.
Mostrar más [+] Menos [-]Green synthesis of metal-based nanoparticles for sustainable agriculture
2022
Jiang, Yaqi | Zhou, Pingfan | Zhang, Peng | Adeel, Muhammad | Shakoor, Noman | Li, Yuanbo | Li, Mingshu | Guo, Manlin | Zhao, Weichen | Lou, Benzhen | Wang, Lingqing | Lynch, Iseult | Rui, Yukui
The large-scale use of conventional pesticides and fertilizers has put tremendous pressure on agriculture and the environment. In recent years, nanoparticles (NPs) have become the focus of many fields due to their cost-effectiveness, environmental friendliness and high performance, especially in sustainable agriculture. Traditional NPs manufacturing methods are energy-intensive and harmful to environment. In contrast, synthesizing metal-based NPs using plants is similar to chemical synthesis, except the biological extracts replace the chemical reducing agent. This not only greatly reduces the used of traditional chemicals, but also produces NPs that are more economical, efficient, less toxic, and less polluting. Therefore, green synthesized metal nanoparticles (GS-MNPs) are widely used in agriculture to improve yields and quality. This review provides a comprehensive and detailed discussion of GS-MNPs for agriculture, highlights the importance of green synthesis, compares the performance of conventional NPs with GS-MNPs, and highlights the advantages of GS-MNPs in agriculture. The wide applications of these GS-MNPs in agriculture, including plant growth promotion, plant disease control, and heavy metal stress mitigation under various exposure pathways, are summarized. Finally, the shortcomings and prospects of GS-MNPs in agricultural applications are highlighted to provide guidance to nanotechnology for sustainable agriculture.
Mostrar más [+] Menos [-]Radiocaesium accumulation and fluctuating asymmetry in the Japanese mitten crab, Eriocheir japonica, along a gradient of radionuclide contamination at Fukushima
2022
Fuller, Neil | Smith, Jim T. | Takase, Tsugiko | Ford, Alex T. | Wada, Toshihiro
The 2011 Tohoku earthquake-tsunami and the subsequent nuclear accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS) led to large-scale radionuclide contamination of the marine and freshwater environment. Monitoring studies of marine food products in the Fukushima region have generally demonstrated a declining trend in radiocaesium concentrations. However, the accumulation and elimination of radiocaesium and potential biological effects remain poorly understood for freshwater biota inhabiting highly contaminated areas at Fukushima. Consequently, the present study aimed to assess radiocaesium accumulation and developmental effects on the commercially important catadromous Japanese mitten crab, Eriocheir japonica. E. japonica were collected from four sites along a gradient of radionuclide contamination 4–44 km in distance from the FDNPS in 2017. To determine potential developmental effects, fluctuating asymmetry (FA) was used as a measure of developmental stability. Combined ¹³⁴Cs and ¹³⁷Cs values for whole E. japonica from highly contaminated sites 4 and 16 km in distance from the FDNPS were 3040 ± 521 and 2250 ± 908 Bq kg⁻¹ wet weight respectively, 30 and 22 times greater than the Japanese standard limit of 100 Bq kg⁻¹. Estimated total dose rates based on radiocaesium concentrations in whole crabs and sediment ranged from 0.016 to 37.7 μGy h⁻¹. No significant relationship between radiocaesium accumulation and FA was recorded, suggesting that chronic radiation exposure at Fukushima is not inducing developmental effects in E. japonica as measured using fluctuating asymmetry. Furthermore, estimated dose rates were below proposed regulatory limits where significant deleterious effects are expected. The present study will aid in the understanding of the long-term consequences of radiation exposure for non-human biota and the management of radioactively contaminated environments.
Mostrar más [+] Menos [-]Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster
2022
Dwivedi, Shiwangi | D'Souza, Leonard Clinton | Shetty, Nidhi Ganesh | Raghu, Shamprasad Varija | Sharma, Anurag
Deciphering the potential mechanism of chemical-induced toxicity enables us to alleviate the cellular and organismal dysfunction. The environmental presence of nonylphenol (endocrine disruptor) has a major health concern due to its widespread usage in our day-to-day life. The current study establishes a novel functional link among nonylphenol-induced oxidative stress, Heat shock protein 27 (Hsp27, member of stress protein family), and Ecdysone receptor (EcR, a nuclear receptor), which eventually coordinates the nonylphenol-induced sub-cellular and organismal level toxicity in a genetically tractable model Drosophila melanogaster. Drosophila larvae exposed to nonylphenol (0.05, 0.5 and 5.0 μg/mL) showed a significant decrease in Hsp27 and EcR mRNA levels in the midgut. In concurrence, reactive oxygen species (ROS) levels were increased with a corresponding decline in glutathione (GSH) level and Thioredoxin reductase (TrxR) activity. Increased lipid peroxidation (LPO), protein carbonyl (PC) contents, and cell death were also observed in a correlation with the nonylphenol concentrations. Sub-cellular toxicity poses a negative organismal response, which was evident by delayed larval development and reduced Drosophila emergence. Subsequently, a positive genetic correlation (p < 0.001) between EcR and Hsp27 revealed that nonylphenol-dependent EcR reduction is a possible link for the downregulation of Hsp27. Further, Hsp27 overexpression in midgut cells showed a reduction in nonylphenol-induced intracellular ROS, LPO, PC content, and cell death through the TrxR mediated regenerative pathway and reduced GSH level improving the organismal response to the nonylphenol exposure. Altogether, the study elucidates the potential EcR-Hsp27 molecular interactions in mitigating the nonylphenol-induced cellular and organismal toxicity.
Mostrar más [+] Menos [-]Role of tectonics and climate on elevated arsenic in fluvial systems: Insights from surface water and sediments along regional transects of Chile
2022
Tapia, Joseline | Mukherjee, Abhijit | Rodríguez, María Pía | Murray, Jesica | Bhattacharya, Prosun
Globally, arsenic (As) contamination is widespread in hydrological systems and the link between As enrichment and regional tectonic and climatic factors is still not well understood in orogenic environments. This work provides new insights on the relationship between As, tectonics, and climate by assessing the hydrochemistry of Chile, an active subduction zone with highly diverse natural settings. Selected study sites include fluvial courses along four regional transects connecting the Chilean coast to the Andes Cordillera in the northern, central, and southern areas of the country. The results indicate that As concentrations in surface water and fluvial sediments show a general positive correlation to crustal thickness and they tend to decrease progressively from northern to southern Chile. In contrast, As concentrations are negatively correlated to average annual precipitation which shows a significant increase toward southern Chile. From a regional tectonic perspective, northern Chile presents greater Andes shortening and higher crustal thicknesses, which induces increased crustal contamination and As content at the surface. Extremely low precipitation rates are also tied to local As enrichment and a sediment-starved trench that might favor higher plate coupling and shortening. On the contrary, decreased shortening of the Andes in southern Chile and related lower crustal thickness induces lower crustal contamination, thus acting as an As-poor provenance for surficial sediments and surface water. High precipitation rates further induce dilution of surface water, potential mobilization from the solid phase, and a significant amount of trench sediments that could induce lower plate coupling and lower shortening. At the local scale, a low potential for As mobilization was found in northern Chile where a greater distribution of As-bearing minerals was observed in sediments, mostly as finer particles (<63 μm). The abundance of Fe-oxides potentially acts as a secondary surficial sink of As under the encountered physicochemical conditions.
Mostrar más [+] Menos [-]Isotopic evidence for bioaccumulation of aerosol lead in fish and wildlife of western Canada
2022
Chételat, John | Cousens, Brian | Hebert, Craig E. | Jung, Thomas S. | Mundy, Lukas | Thomas, Philippe J. | Zhang, Shuangquan
Lead (Pb) is a toxic element which is released as a result of anthropogenic activities, and Pb stable isotope ratios provide a means to distinguish sources and transport pathways in receiving environments. In this study, isotopes of bioaccumulated Pb (²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb) were examined for diverse terrestrial and aquatic biota from three areas in western Canada: (a) otter, marten, gulls, terns, and wood frogs in the Alberta Oil Sands Region (AOSR), (b) fish, plankton, and gulls of Great Slave Lake (Yellowknife, Northwest Territories), and (c) wolverine from the Yukon. Aquatic and terrestrial biota from different habitats and a broad geographic area showed a remarkable similarity in their Pb isotope composition (grand mean ± 1 standard deviation: ²⁰⁶Pb/²⁰⁷Pb = 1.189 ± 0.007, ²⁰⁸Pb/²⁰⁷Pb = 2.435 ± 0.009, n = 116). Comparisons with Pb isotope ratios of local sources and environmental receptors showed that values in biota were most similar to those of atmospheric Pb, either measured in local aerosols influenced by industrial activities in the AOSR or in lichens (an aerosol proxy) near Yellowknife and in the Yukon. Biotic Pb isotope ratios were different from those of local geogenic Pb. Although the Pb isotope measurements could not unambiguously identify the specific anthropogenic sources of atmospheric Pb in biota, initial evidence points to the importance of fossil fuels currently used in transportation and power generation. Further research should characterize bioavailable chemical species of Pb in aerosols and important emission sources in western Canada.
Mostrar más [+] Menos [-]Unraveling the dynamics of organic micropollutants in wastewater: Online LC-MS/MS analysis at high temporal resolution
2022
Köke, Niklas | Solano, Fernando | Knepper, T. P. (Thomas P.) | Frömel, Tobias
Online monitoring of organic micropollutants (OMPs) in the aquatic environment at high temporal resolution is an upcoming technique that provides insights into their dynamics and has the potential to bring water research and management to a new level. An online monitoring setup was developed to quantify OMPs in wastewater treatment plant (WWTP) influent and effluent using automated and continuous sampling, sample preparation, online solid-phase extraction-liquid chromatography-tandem mass spectrometry analysis and data evaluation. This online monitoring setup provided high selectivity and sensitivity (limit of quantification down to 1 ng/L) as well as a stable performance during one week of constant operation whilst using a high sampling frequency of 10 min (>1000 samples). Custom automated data evaluation enabled quantification within seconds after each measurement and results were comparable to those from a commercial software. Additionally, an alarm tool was included in the evaluation application, which automatically notified the user in case a substance exceeded a predefined threshold. The online monitoring setup was applied to WWTP influent and effluent, where 57 substances were monitored over a period of one week and two days, respectively. High temporal resolution enabled the observation of periodic patterns of pharmaceuticals as well as pollution by OMPs originating from point and diffuse sources, while dynamics of OMPs in WWTP effluent were less pronounced. These new insights into the dynamics of OMPs in WWTP influent, which would not be observable using 24 h composite samples, will be a starting point for new stormwater and wastewater research and management strategies.
Mostrar más [+] Menos [-]