Refinar búsqueda
Resultados 1751-1760 de 6,548
High inter-species differences of 12378-polychlorinated dibenzo-p-dioxin between humans and mice Texto completo
2020
Dong, Zhaomin | Ben, Yujie | Li, Yu | Li, Tong | Wan, Yi | Hu, Jianying
Although huge interspecies differences in the response to dioxins have been acknowledged, toxic equivalency factors derived from rodent studies are often used to assess human health risk. To determine interspecies differences, we first developed a toxicokinetic model in humans by measuring dioxin concentrations in environmental and biomonitoring samples from Southern China. Significant positive correlations between dioxin concentrations in blood and age were observed for seven dioxin congeners, indicating an age-dependent elimination rate. Based on toxicokinetic models in humans, the half-lives of 15 dioxin congeners were estimated to be 1.60–28.55 years. In consideration that the highest contribution to total toxic equivalency in blood samples was by 12378-polychlorinated dibenzo-p-dioxin (P₅CDD), this study developed a physiologically based pharmacokinetic (PBPK) model of 12378-P₅CDD levels in the liver, kidney, and fat of C57/6J mice exposed to a single oral dose, and the half-life was estimated to be 26.1 days. Based on estimated half-lives in humans and mice, we determined that the interspecies difference of 12378-P₅CDD was 71, much higher than the default usually used in risk assessment. These results could reduce the uncertainty human risk assessment of 12378-P₅CDD, and our approach could be used to estimate the interspecies differences of other dioxin congeners.
Mostrar más [+] Menos [-]Activation of sulfite autoxidation with CuFe2O4 prepared by MOF-templated method for abatement of organic contaminants Texto completo
2020
Zhao, Xiaodan | Wu, Wenjing | Jing, Guohua | Zhou, Zuoming
Copper ferrite (denoted as CuFe₂O₄MOF), prepared via a complexation reaction to obtain bimetal–organic frameworks (Cu/Fe bi-MOFs), followed by a combustion process to remove the MOF template, is employed as a heterogeneous activator to promote sulfite autoxidation for the removal of organic contaminants. At pH 8.0, more than 80% of the recalcitrant organic contaminant iohexol (10 μM) can be removed within 2 min by the activation of sulfite (500 μM) with CuFe₂O₄MOF (0.1 g L⁻¹). CuFe₂O₄MOF exhibits more pronounced catalytic activity in accelerating sulfite autoxidation for iohexol abatement compared to that fabricated by hydrothermal and sol–gel combustion methods. Radical quenching studies suggest that the sulfate radical (SO₄•⁻) is the main reactive species responsible for iohexol abatement. The performance of CuFe₂O₄MOF/sulfite for iohexol abatement can be affected by several critical influencing factors, including the solution pH and the presence of humic acid, Cl⁻, and HCO₃⁻. The effect of the ionic strength and the results of the attenuated total reflectance–Fourier transform infrared (ATR–FTIR) analysis indicate that sulfite autoxidation in the presence of CuFe₂O₄MOF involves an inner-sphere interaction with the surface Cu(II) sites of CuFe₂O₄MOF. X-ray photoelectron spectroscopy (XPS) characterization suggests that the surface Cu(II)–Cu(I)–Cu(II) redox cycle is responsible for efficient SO₄•⁻ production from sulfite. Overall, CuFe₂O₄MOF can be considered an alternative activator for sulfite autoxidation for potential application in the treatment of organic-contaminated water.
Mostrar más [+] Menos [-]Early life exposure to air pollution, green spaces and built environment, and body mass index growth trajectories during the first 5 years of life: A large longitudinal study Texto completo
2020
de Bont, Jeroen | Hughes, Rachael | Tilling, Kate | Díaz, Yesika | de Castro, Montserrat | Cirach, Marta | Fossati, Serena | Nieuwenhuijsen, Mark | Duarte-Salles, Talita | Vrijheid, Martine
Urban environments are characterized by multiple exposures that may influence body mass index (BMI) growth in early life. Previous studies are few, with inconsistent results and no evaluation of simultaneous exposures. Thus, this study aimed to assess the associations between exposure to air pollution, green spaces and built environment characteristics, and BMI growth trajectories from 0 to 5 years. This longitudinal study used data from an electronic primary care health record database in Catalonia (Spain), including 79,992 children born between January 01, 2011 and December 31, 2012 in urban areas and followed until 5 years of age. Height and weight were measured frequently during childhood and BMI (kg/m²) was calculated. Urban exposures were estimated at census tract level and included: air pollution (nitrogen dioxide (NO₂), particulate matter <10 μm (PM₁₀) and <2.5 μm (PM₂.₅₎), green spaces (Normalized Difference Vegetation Index (NDVI) and % green space) and built environment (population density, street connectivity, land use mix, walkability index). Individual BMI trajectories were estimated using linear spline multilevel models with several knot points. In single exposure models, NO₂, PM₁₀, PM₂.₅, and population density were associated with small increases in BMI growth (e.g. β per IQR PM₁₀ increase = 0.023 kg/m², 95%CI: 0.013, 0.033), and NDVI, % of green spaces and land use mix with small reductions in BMI growth (e.g. β per IQR % green spaces increase = −0.015 kg/m², 95%CI: −0.026, −0.005). These associations were strongest during the first two months of life. In multiple exposure models, most associations were attenuated, with only those for PM₁₀ and land use mix remaining statistically significant. This large longitudinal study suggests that early life exposure to air pollution, green space and built environment characteristics may be associated with small changes in BMI growth trajectories during the first years of life, and that it is important to account for multiple exposures in urban settings.
Mostrar más [+] Menos [-]Evaluation of different forms of Egyptian diatomite for the removal of ammonium ions from Lake Qarun: A realistic study to avoid eutrophication Texto completo
2020
AbuKhadra, Moustafa R. | Eid, Mohamd Hamdy | Allam, Ahmed Aly | Ajarem, Jamaan S. | Almalki, Ahmed M. | Salama, Yasser
Three types of diatomite-based adsorbents—diatomaceous earth (DE), purified diatomite (PD), and diatomite@MgO/CaO (D@MgO) were used for adsorption decontamination of ammonium from Lake Qarun water (28.7 mg/L). The adsorption properties of the three diatomite-based adsorbents were evaluated by both batch and fixed-bed column adsorption studies. The kinetic results demonstrated removal percentages of 97.2%, 69.5%, and 100% using DE, PD, and D@MgO, respectively, at a 1 g/L adsorbent dosage. The adsorption results using DE and D@MgO showed the best fitness with pseudo-first-order kinetic and Langmuir isotherm models, while the obtained results using PD demonstrate better fitness with the Freunlidich model. The recognised fitting results with the pseudo-first-order model and estimated adsorption energies demonstrated physical uptake of ammonium by DE (5.93 kJ/mol), PD (4.05 kJ/mol), and D@MgO (7.81 kJ/mol). The theoretical maximum ammonium uptake capacity of DE, PD, and D@MgO were 63.16 mg/g, 59.5 mg/g, and 78.3 mg/g, respectively. Using synthetic adsorbents in a fixed-bed column system for treating ammonium ions in Lake Qarun water resulted in removal percentages of 57.4%, 53.3%, and 62.6% using a DE bed, PD bed, and D@MgO bed, respectively, after treating approximately 7.2 L of Lake Qarun water using a bed thickness of 3 cm, a flow rate of 5 mL/min, pH 8, and the determined ammonium concentration in Lake Qarun water (28.7 mg/L). The curves demonstrated breakthrough times of 900 min, 900 min, and 960 min for the DE bed, PD bed, and D@MgO bed, respectively, with 1440 min as the saturation time. The columns’ performances also were studied based on the Thomas model, the Adams-Bohart model, and the Yoon-Nelson model.
Mostrar más [+] Menos [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: The challenges of ecological risk assessments Texto completo
2020
Hodson, P.V. | Wallace, S.J. | de Solla, S.R. | Head, S.J. | Hepditch, S.L.J. | Parrott, J.L. | Thomas, P.J. | Berthiaume, A. | Langlois, V.S.
Ecological risk assessments (ERAs) of polycyclic aromatic compounds (PACs), as single congeners or in mixtures, present technical challenges that raise concerns about their accuracy and validity for Canadian environments. Of more than 100,000 possible PAC structures, the toxicity of fewer than 1% have been tested as individual compounds, limiting the assessment of complex mixtures. Because of the diversity in modes of PAC action, the additivity of mixtures cannot be assumed, and mixture compositions change rapidly with weathering. In vertebrates, PACs are rapidly oxygenated by cytochrome P450 enzymes, often to metabolites that are more toxic than the parent compound. The ability to predict the ecological fate, distribution and effects of PACs is limited by toxicity data derived from tests of a few responses with a limited array of test species, under optimal laboratory conditions. Although several models are available to predict PAC toxicity and rank species sensitivity, they were developed with data biased by test methods, and the reported toxicities of many PACs exceed their solubility limits. As a result, Canadian Environmental Quality Guidelines for a few individual PACs provide little support for ERAs of complex mixtures in emissions and at contaminated sites. These issues are illustrated by reviews of three case studies of PAC-contaminated sites relevant to Canadian ecosystems. Interactions among ecosystem characteristics, the behaviour, fate and distribution of PACs, and non-chemical stresses on PAC-exposed species prevented clear associations between cause and effect. The uncertainties of ERAs can only be reduced by estimating the toxicity of a wider array of PACs to species typical of Canada’s diverse geography and environmental conditions. Improvements are needed to models that predict toxicity, and more field studies of contaminated sites in Canada are needed to understand the ecological effects of PAC mixtures.
Mostrar más [+] Menos [-]Increased inheritance of structure and function of bacterial communities and pathogen propagation in plastisphere along a river with increasing antibiotics pollution gradient Texto completo
2020
Xue, Nana | Wang, Liyi | Li, Wenfeng | Wang, Shanshan | Pan, Xiangliang | Zhang, Daoyong
Plastic debris provides a stable substrate and novel ecological niche for microorganisms in the aquatic environment, which was referred to as “Plastisphere”. Little is known about distribution patterns and responses of ecological function and structure of microbial communities in the plastisphere along rivers which usually have antibiotics pollution gradient. In this study, the differences in the community structure between the plastisphere and the planktonic bacteria, and their spatial variation of the community structure and function along a river with increased antibiotics pollution gradient was investigated at the watershed scale. The diversity of bacteria colonized on most plastic debris was higher than in surrounding water. Plastic debris could accumulate a higher abundance of some potential pathogens than surrounding water even at high antibiotics concentrations. The source tracking results showed that downstream plastisphere inherited much higher proportions of bacterial taxa from upstream than planktonic bacteria. About 92.3–99.7% of bacteria communities in downstream water were not from upstream but from the input of downstream human activities. On the contrary, high proportions of bacterial taxa in downstream plastisphere were closely connected to upstream. The plastisphere possesses higher ecological functional diversity than the planktonic bacteria. Seventy nine functional groups across plastisphere were predicted using functional annotation of prokaryotic taxa and only 65 functional groups were found in the planktonic bacteria. Plastisphere also acts as hotspot for biogeochemical cycling of nutrients such as N and S. Intensive human activities of urban and downstream agriculture and aquaculture had great effects on microbial community structure and functional groups of the Urumqi River. Pastisphere communities are much more resistant to human disturbance than planktonic bacteria. Compared to surrounding water, plastisphere increased inheritance from upstream microbial structure and function and also increased survival and propagation of pathogens in the downstream water with high concentrations of antibiotics.
Mostrar más [+] Menos [-]Evaluating the meteorological normalized PM2.5 trend (2014–2019) in the “2+26” region of China using an ensemble learning technique Texto completo
2020
Qu, Linglu | Liu, Shijie | Ma, Linlin | Zhang, Zhongzhi | Du, Jinhong | Zhou, Yunhong | Meng, Fan
In recent years, implementation of aggressive and strict clean air policies has resulted in significant decline in observed PM₂.₅ concentration in the Beijing–Tianjin–Hebei (BTH) region and its surrounding areas (i.e., the “2 + 26” region). To eliminate the effects of interannual and seasonal meteorological variation, and to evaluate the effectiveness of emission abatement policies, we applied a boosted regression tree model to remove confounding meteorological factors. Results showed that the annual average PM2.5 concentration normalized by meteorology for the “2 + 26” region declined by 38% during 2014–2019 (i.e., from 96 to 60 μg/m³); however, the BTH region exhibited the most remarkable decrease in PM₂.₅ concentration (i.e., a 60% reduction). Certain seasonal trend in normalized PM₂.₅ level remained for four target subregions owing to the effects of anthropogenic emissions in autumn and winter. Although strong interannual variations of meteorological conditions were unfavorable for pollutant dispersion during the heating seasons of 2016–2018, the aggressive abatement policies were estimated to have contributed to reductions in normalized PM₂.₅ concentration of 19%, 10%, 19%, and 17% in the BTH, Henan, Shandong, and Shanxi subregions, respectively. Our study eliminated the meteorological contribution to concentration variation and confirmed the effectiveness of the implemented clean air policies.
Mostrar más [+] Menos [-]Emission characteristics and health risk assessment of VOCs from a food waste anaerobic digestion plant: A case study of Suzhou, China Texto completo
2020
Zheng, Guodi | Liu, Junwan | Shao, Zhuze | Chen, Tongbin
The process of anaerobic digestion in food waste treatment plants generates a large amount of volatile organic compounds (VOCs). Long-term exposure to this exhaust gas can pose a threat to the health of workers and people living nearby. In this study, VOCs emitted from different working units in a food waste anaerobic digestion plant were monitored for a year. Variations in VOCs emitted from each unit were analyzed and a health risk assessment was conducted for each working unit. The results show that the concentration of VOCs in different units varied greatly. The highest cumulative concentration of VOCs appeared in the hydrothermal hydrolysis unit (3.49 × 10⁴ μg/m³), followed by the sorting/crushing room (8.97 × 10³ μg/m³), anaerobic digestion unit (6.21 × 10² μg/m³), and biogas production unit (2.01 × 10² μg/m³). Oxygenated compounds and terpenes were the major components of the emitted VOCs, accounting for more than 98% of total VOC emissions. The carcinogenic risk in the plant exceeded the safety threshold (ILCR<1 × 10⁻⁶), while the non-carcinogenic risk was within the acceptable range (HI < 1). The carcinogenic risk from the hydrothermal hydrolysis unit was the highest, reaching 4.4 × 10⁻⁵, and was labeled as “probable risk.” The carcinogenic risk at the plant boundary was 1.2 × 10⁻⁵, indicating exhaust gases can cause a health threat to neighbors. Therefore, management VOCs in anaerobic digestion plants should receive more attention, and employees should minimize the time they spend in the hydrothermal hydrolysis unit.
Mostrar más [+] Menos [-]Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate Texto completo
2020
Dai, Tianjiao | Zhao, Yanan | Ning, Daliang | Huang, Bei | Mu, Qinglin | Yang, Yunfeng | Wen, Donghui
The nutrient-rich effluent from wastewater treatment plants (WWTPs) constitutes a significant disturbance to coastal microbial communities, which in turn affect ecosystem functioning. However, little is known about how such disturbance could affect the community’s stability, an important knowledge gap for predicting community response to future disturbances. Here, we examined dynamics of coastal sediment microbial communities with and without a history of WWTP’s disturbances (named H1 and H0 hereafter) after simulated nutrient input loading at the low level (5 mg L⁻¹ NH₄⁺-N and 0.5 mg L⁻¹ PO₄³⁻-P) or high level (50 mg L⁻¹ NH₄⁺-N and 5.0 mg L⁻¹ PO₄³⁻-P) for 28 days. H0 community was highly sensitive to both low and high nutrient loading, showing a faster community turnover than H1 community. In contrast, H1 community was more efficient in nutrient removal. To explain it, we found that H1 community constituted more abundant and diversified r-strategists, known to be copiotrophic and fast in growth and reproduction, than H0 community. As nutrient was gradually consumed, both communities showed a succession of decreasing r-strategists. Accordingly, there was a decrease in community average ribosomal RNA operon (rrn) copy number, a recently established functional trait of r-strategists. Remarkably, the average rrn copy number of H0 communities was strongly correlated with NH₄⁺-N (R² = 0.515, P = 0.009 for low nutrient loading; R² = 0.749, P = 0.001 for high nutrient loading) and PO₄³⁻-P (R² = 0.378, P = 0.034 for low nutrient loading; R² = 0.772, P = 0.001 for high nutrient loading) concentrations, while that of H1 communities was only correlated with NH₄⁺-N at high nutrient loading (R² = 0.864, P = 0.001). Our results reveal the potential of using rrn copy number to evaluate the community sensitivity to nutrient disturbances, but community’s historical contingency need to be taken in account.
Mostrar más [+] Menos [-]Effects of the organic UV-filter, 3-(4-methylbenzylidene) camphor, on benthic invertebrates and ecosystem function in artificial streams Texto completo
2020
Campos, Diana | Machado, Ana L. | Cardoso, Diogo N. | Silva, Ana Rita R. | Silva, Patrícia V. | Rodrigues, Andreia C.M. | Simão, Fátima C.P. | Loureiro, Susana | Grabicová, Kateřina | Nováková, Petra | Soares, Amadeu M.V.M. | Pestana, João L.T.
In the last decades, the use of organic ultraviolet-filters (UV-filters) has increased worldwide, and these compounds are now considered emerging contaminants of many freshwater ecosystems. The present study aimed to assess the effects of 3-(4-methylbenzylidene) camphor (4-MBC) on a freshwater invertebrate community and on associated ecological functions. For that, artificial streams were used, and a natural invertebrate benthic community was exposed to sediments contaminated with two concentrations of 4-MBC. Effects were evaluated regarding macroinvertebrate abundance and community structure, as well as leaf decomposition and primary production. Results showed that the macroinvertebrate community parameters and leaf decomposition rates were not affected by 4-MBC exposure. On the other hand, primary production was strongly reduced. This study highlights the importance of higher tier ecotoxicity experiments for the assessment of the effects of low concentrations of organic UV-filters on freshwater invertebrate community structure and ecosystem functioning.
Mostrar más [+] Menos [-]