Refinar búsqueda
Resultados 1811-1820 de 6,560
Chronic exposure to a pervasive pharmaceutical pollutant erodes among-individual phenotypic variation in a fish Texto completo
2020
Shan, Hong | Polverino, Giovanni | Martin, Jake M. | Bertram, Michael G. | Wiles, Sarah C. | Palacios, Maria M. | Bywater, Candice L. | White, Craig R. | Wong, Bob B.M.
Pharmaceutical pollution is now recognised as a major emerging agent of global change. Increasingly, pharmaceutical pollutants are documented to disrupt ecologically important physiological and behavioural traits in exposed wildlife. However, little is known about potential impacts of pharmaceutical exposure on among-individual variation in these traits, despite phenotypic diversity being critical for population resilience to environmental change. Furthermore, although wildlife commonly experience multiple stressors contemporaneously, potential interactive effects between pharmaceuticals and biological stressors—such as predation threat—remain poorly understood. To redress this, we investigated the impacts of long-term exposure to the pervasive pharmaceutical pollutant fluoxetine (Prozac®) on among-individual variation in metabolic and behavioural traits, and the combined impacts of fluoxetine exposure and predation threat on mean metabolic and behavioural traits in a freshwater fish, the guppy (Poecilia reticulata). Using a mesocosm system, guppy populations were exposed for 15 months to one of two field-realistic levels of fluoxetine (nominal concentrations: 30 and 300 ng/L) or a solvent control. Fish from these populations were then tested for metabolic rate (oxygen uptake) and behaviour (activity), both before and after experiencing one of three levels of a predation treatment: an empty tank, a non-predatory fish (Melanotaenia splendida) or a predatory fish (Leiopotherapon unicolor). Guppies from both fluoxetine treatments had ∼70% lower among-individual variation in their activity levels, compared to unexposed fish. Similarly, fluoxetine exposure at the higher dosage was associated with a significant (26%) reduction in individual-level variation in oxygen uptake relative to unexposed fish. In addition, mean baseline metabolic rate was disrupted in low-fluoxetine exposed fish, although mean metabolic and behavioural responses to predation threat were not affected. Overall, our study demonstrates that long-term exposure to a pervasive pharmaceutical pollutant alters ecologically relevant traits in fish and erodes among-individual variability, which may be detrimental to the stability of contaminated populations globally.
Mostrar más [+] Menos [-]Tris(4-hydroxyphenyl)ethane (THPE), a trisphenol compound, is antiestrogenic and can retard uterine development in CD-1 mice Texto completo
2020
Xiao, Han | Wang, Yue | Jia, Xiaojing | Yang, Lei | Wang, Xiaoning | Guo, Xuan | Zhang, Zhaobin
Tris (4-hydroxyphenyl)ethane (THPE), a trisphenol compound widely used as a branching agent and raw material in plastics, adhesives, and coatings is rarely regarded with concern. However, inspection of in vitro data suggests that THPE is an antagonist of estrogen receptors (ERs). Accordingly, we aimed to evaluate the antiestrogenicity of THPE in vivo and tested its effect via oral gavage on pubertal development in female CD-1 mice. Using uterotrophic assays, we found that THPE either singly, or combined with 17β-estradiol (E₂) (400 μg/kg bw/day) suppressed the uterine weights at low doses (0.1, 0.3, and 1 mg/kg bw/day) in 3-day treatment of weaning mice. When mice were treated with THPE during adolescence (for 10 days beginning on postnatal day 24), their uterine development was significantly retarded at doses of at least 0.1 mg/kg bw/day, manifest as decreased uterine weight, atrophic endometrial stromal cells and thinner columnar epithelial cells. Transcriptome analyses of uteri demonstrated that estrogen-responsive genes were significantly downregulated by THPE. Molecular docking shows that THPE fits well into the antagonist pocket of human ERα. These results indicate that THPE possesses strong antiestrogenicity in vivo and can disrupt normal female development in mice at very low dosages.
Mostrar más [+] Menos [-]Comparison of Cu salts and commercial Cu based fungicides on toxicity towards microorganisms in soil Texto completo
2020
Vázquez-Blanco, Raquel | Arias-Estévez, Manuel | Bååth, Erland | Fernández-Calviño, David
Microbial responses to Cu pollution as a function of Cu sources (Cu salts and commercial Cu fungicides) were assessed in a soil using basal soil respiration, and bacterial and fungal community growth, as endpoints. The soil was amended with different concentrations (0–32 mmol Cu kg⁻¹) of Cu nitrate, Cu sulfate, Bordeaux mixture and 3 types of Cu oxychloride. Cu salts decreased soil pH, while this was not found with the other Cu sources. This difference in soil pH effects caused differences in the respiration, bacterial growth and fungal growth response. Basal soil respiration was negatively affected by Cu addition when the soil was spiked with Cu salts, but almost unaffected by commercial Cu fungicides. Bacterial growth was significantly and negatively affected by Cu addition for all the Cu sources, but Cu toxicity was higher for Cu salts than for commercial Cu fungicides. Fungal growth response was also different for Cu salts and commercial Cu fungicides, but only in the long-term. High Cu amendments using Cu salts stimulated fungal growth, whereas for commercial Cu fungicides, these concentrations inhibited fungal growth. Thus, the use of products similar to those used in commercial fungicides is a recommended practice for Cu risk assessments in soil.
Mostrar más [+] Menos [-]Monitoring of ammonia in marine waters using a passive sampler with biofouling resistance and neural network-based calibration Texto completo
2020
O’Connor Šraj, Lenka | Almeida, Maria Inês G.S. | Sharp, Simon M. | McKelvie, Ian D. | Morrison, Richard | Kolev, Spas D.
A biofouling resistant passive sampler for ammonia, where the semi-permeable barrier is a microporous hydrophobic gas-diffusion membrane, has been developed for the first time and successfully applied to determine the time-weighted average concentration of ammonia in estuarine and coastal waters for 7 days. Strategies to control biofouling of the membrane were investigated by covering it with either a copper mesh or a silver nanoparticle functionalised cotton mesh, with the former approach showing better performance. The effects of temperature, pH and salinity on the accumulation of ammonia in the newly developed passive sampler were studied and the first two parameters were found to influence it significantly. A universal calibration model for the passive sampler was developed using the Group Method Data Handling algorithm based on seawater samples spiked with known concentrations of total ammonia under conditions ranging from 10 to 30 °C, pH 7.8 to 8.2 and salinity 20 to 35. The newly developed passive sampler is affordable, user-friendly, reusable, sensitive, and can be used to detect concentrations lower than the recently proposed guideline value of 160 μg total NH₃–N L⁻¹, for a 99% species protection level, with the lowest concentration measured at 17 nM molecular NH₃ (i.e., 8 μg total NH₃–N L⁻¹ at pH 8.0 and 20 °C). It was deployed at four field sites in the coastal waters of Nerm (Port Phillip Bay), Victoria, Australia. Good agreement was found between molecular ammonia concentrations obtained with passive and discrete grab sampling methods (relative difference, - 12% to - 19%).
Mostrar más [+] Menos [-]Constant light exposure causes oocyte meiotic defects and quality deterioration in mice Texto completo
2020
Zhang, Huiting | Yan, Ke | Sui, Lumin | Nie, Junyu | Cui, Kexin | Liu, Jiahao | Zhang, Hengye | Yang, Xiaogan | Lu, Kehuan | Liang, Xingwei
Artificial light at night (ALAN) exposes us to prolonged illumination, that adversely affects female reproduction. However, it remains to be clarified how prolonged light exposure affects oocyte meiotic maturation and quality. To this end, we exposed female mice to a constant light (CL) of 250 lux for different durations. Our findings showed that CL exposure for 7 weeks reduced the oocyte maturation rate. Meanwhile, CL exposure caused greater abnormalities in spindle assembly and chromosome alignment and a higher rate of oocyte aneuploidy than the regular light dark cycle. CL exposure also induced oxidative stress and caused mitochondrial dysfunction, which resulted in oocyte apoptosis and autophagy. Notably, our results showed that CL exposure reduced the levels of α-tubulin acetylation, DNA methylation at 5 mC, RNA methylation at m⁶A and histone methylation at H3K4me2 but increased the levels of histone methylation at H3K27me2 in oocytes. In summary, our findings demonstrate that constant bright light exposure causes oocyte meiotic defects and reduces cytoplasmic quality. These results extend the current understanding of ALAN-mediated defects in female reproduction.
Mostrar más [+] Menos [-]Transformation of m-aminophenol by birnessite (δ-MnO2) mediated oxidative processes: Reaction kinetics, pathways and toxicity assessment Texto completo
2020
Huang, Wenqian | Wu, Guowei | Xiao, Hong | Song, Haiyan | Gan, Shuzhao | Ruan, Shuhong | Gao, Zhihong | Song, Jianzhong
The m-aminophenol (m-AP) is a widely used industrial chemical, which enters water, soils, and sediments with waste emissions. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate the transformation of m-AP with fast rates under acidic conditions. Because of the highly complexity of the m-AP transformation, mechanism-based models were taken to fit the transformation kinetic process of m-AP. The results indicated that the transformation of m-AP with δ-MnO2 could be described by precursor complex formation rate-limiting model. The oxidative transformation of m-AP on the surface of δ-MnO2 was highly dependent on reactant concentrations, pH, temperature, and other co-solutes. The UV-VIS absorbance and mass spectra analysis indicated that the pathway leading to m-AP transformation may be the polymerization through the coupling reaction. The m-AP radicals were likely to be coupled by the covalent bonding between unsubstituted C2, C4 or C6 atoms in the m-AP aromatic rings to form oligomers as revealed by the results of activation energy and mass spectra. Furthermore, the toxicity assessment of the transformation productions indicated that the toxicity of m-AP to the E. coli K-12 could be reduced by MnO2 mediated transformation. The results are helpful for understanding the environmental behavior and potential risk of m-AP in natural environment.
Mostrar más [+] Menos [-]Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant Texto completo
2020
Singh, Vikash | Srivastava, Vimal Chandra
In the present work, low-cost and efficient iron oxide nanoparticle incorporated on mesoporous biochar was prepared from effluent treatment plant (ETP) sludge collected from the textile industry. This sludge contains a higher amount of Fe due to the use of ferric chloride as a coagulant in the treatment of wastewater generated during the process. The raw sludge and prepared biochar was extensively examined by various sophisticated techniques like XRF, XRD, BET, TGA, XPS, RAMAN, FTIR, FESEM, TEM, and VSM. TEM and XRD analysis confirms the presence of iron oxide nanoparticles on mesoporous biochar. The prepared biochar was found to possess BET surface area of 91 m² g⁻¹. Several parameters like pH, dose, initial concentration, temperature and time were optimized for the adsorptive removal of ofloxacin (OFL) from aqueous solution. Biochar (named as BTSFe) achieved ≈96% removal efficiency of OFL with a maximum adsorption capacity (qₘ) of 19.74 mg g⁻¹ at optimum condition. π-π electron–donor-acceptor and H bonding were the major mechanisms responsible for the OFL adsorption. Kinetic and equilibrium thermodynamic study of showed that the adsorption of OFL was represented by the pseudo-second-order kinetics model, and the process was exothermic and spontaneous. Additionally, Redlich-Peterson and Freundlich isotherms best fitted the experimental data indicating multilayer adsorption phenomenon. Biochar was magnetically separated and thermally regenerated after each cycle for five times with a nominal overall decrease of ≈8% in removal efficiency. Leaching of iron during the adsorption process was also checked and found to be within the permissible limit. This study provides an alternative application of the textile industry sludge as an efficient, low-cost biochar for the removal of emerging pharmaceutical compounds.
Mostrar más [+] Menos [-]Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli Texto completo
2020
Wang, Dali | Ning, Qing | Dong, Jiayu | Brooks, Bryan W. | Yau, Ching
Antibiotics in the environment usually co-exist with their transformation products with retained toxicity, raising concerns about environmental risks of their combined exposure. Herein, we reported a novel predictive approach for evaluating the individual and combined toxicity for photodegradation products of fluoroquinolone antibiotics (FQs). Quantitative structure-activity relationship (QSAR) models with promising predictive performance were constructed and validated using experimental data obtained with 13 FQs and 78 mixtures towards E. coli. A structural descriptor reflecting the interaction among FQ molecules and the target protein was employed in the QSAR models, which was obtained through molecular docking and thus provided a rational mechanistic explanation for these models. The predicted results indicated that the degradation products displayed varying degrees of changes compared to the parent FQs, while the combined toxicity of FQs and their degradation products was mostly additive. Furthermore, following UV irradiation the degradation products displayed elevated capacity of inducing resistance mutations in E. coli, though their overall toxicity was reduced. This result highlights the implications of antibiotic degradation products on resistance development in bacteria and stresses the importance of considering such impacts during environmental risk assessments of antibiotics.
Mostrar más [+] Menos [-]Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and albumin fractions Texto completo
2020
Li, Zongrui | He, Chang | Thái Phong, | Wang, Xianyu | Bräunig, Jennifer | Yu, Yunjiang | Luo, Xiaojun | Mai, Bixian | Mueller, Jochen F.
A substantial increase in the usage of organophosphate esters (OPEs) as flame retardants and plasticizers in rubbers, textiles, upholstered furniture, lacquers, plastics, building materials and electronic equipment has resulted in their increasing concentrations in the environment over time. However, little is known about the concentrations and fate of OPEs and their metabolites (mOPEs) in biota, including chicken eggs. The aim of this study was to understand the spatial variation in the concentrations in chicken eggs and the partitioning between yolk and albumin. In total, 153 chicken eggs were purchased across Australia and analysed for 9 OPEs and 11 mOPE. Most of the compounds were found to be deposited in egg yolk, where diphenyl phosphate (DPHP, 3.8 ng/g wet weight, median) and tris(2-chloroisopropyl) phosphate (TCIPP, 1.8 ng/g wet weight, median) were predominant mOPE and OPE, respectively. Moreover, no spatial differences in concentrations of OPEs and mOPEs in eggs purchased from different locations were found in this study. Although comparable levels of ∑OPEs were detected in egg yolk and albumin, much higher concentrations of ∑mOPEs were found in yolk than albumin. Meanwhile, a negative correlation (R² = 0.964, p = 0.018) was found between the molecular mass of analytes and partitioning coefficient of Cyₒₗₖ/Cyₒₗₖ₊ₐₗbᵤₘᵢₙ (defined as chemical concentration in egg yolk divided by the sum of chemical concentrations in both yolk and albumin). These results indicate that n-octanol/water partition coefficients (log KOW) may not be a crucial factor in the distribution of OPEs and mOPEs between egg yolk and albumin, which is important in understanding distribution of emerging organic contaminants in biota.
Mostrar más [+] Menos [-]Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil Texto completo
2020
Lu, Qi | Weng, Yineng | You, Yue | Xu, Qianru | Li, Haiyue | Li, Yuan | Liu, Huijun | Du, Shaoting
Promotion of plant capacity for accumulation of heavy metals (HMs) is one of the key strategies in enhancing phytoremediation in contaminated soils. Here we report that, Rhodococcus qingshengii, an abscisic acid (ABA)-catabolizing bacteria, clearly boosts levels of Cd, Zn, and Ni in wild-type Arabidopsis by 47, 24, and 30%, respectively, but no increase in Cu was noted, when compared with non-inoculated Arabidopsis plants in contaminated growth substrate. Furthermore, when compared with wild-type plants, R.qingshengii-induced increases in Cd, Zn, and Ni concentrations were more pronounced in abi1/hab1/abi2 (ABA-sensitive mutant) strains of Arabidopsis, whereas little effect was observed in snrk2.2/2.3 (ABA insensitive mutant). This demonstrates that metabolizing ABA might be indispensable for R. qingshengii to improve metal accumulation in plants. Bacterial inoculation significantly elevated the expression of Cd, Zn, and Ni-related transporters; whereas the transcript levels of Cu transporters remained unchanged. This result may be a reasonable explanation for why the uptake of Cd, Zn, and Ni in plants was stimulated by bacterial inoculation, while no effect was observed on Cu levels. From our results, we clearly demonstrate that R. qingshengii can increase the accumulation of Cd, Zn, and Ni in plants via an ABA-mediated HM transporters-associated mechanism. Metabolizing ABA in the plants by ABA-catabolizing bacterial inoculation might be an alternative strategy to improve phytoremediation efficiency in HMs contaminated soil.
Mostrar más [+] Menos [-]