Refinar búsqueda
Resultados 1831-1840 de 1,908
Perfluorinated compounds affect the function of sex hormone receptors
2013
Kjeldsen, Lisbeth Stigaard | Bonefeld-Jørgensen, Eva Cecilie
Perfluorinated compounds (PFCs) are a large group of chemicals used in different industrial and commercial applications. Studies have suggested the potential of some PFCs to disrupt endocrine homeostasis, increasing the risk of adverse health effects. This study aimed to elucidate mechanisms behind PFC interference with steroid hormone receptor functions. Seven PFCs [perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA)] were analyzed in vitro for their potential to affect estrogen receptor (ER) and androgen receptor (AR) transactivity as well as aromatase enzyme activity. The PFCs were assessed as single compounds and in an equimolar mixture. PFHxS, PFOS and PFOA significantly induced the ER transactivity, whereas PFHxS, PFOS, PFOA, PFNA and PFDA significantly antagonized the AR activity in a concentration-dependent manner. Moreover, PFDA weakly decreased the aromatase activity at a high test concentration. A mixture effect more than additive was observed on AR function. We conclude that five of the seven PFCs possess the potential in vitro to interfere with the function of the ER and/or the AR. The observed mixture effect emphasizes the importance of considering the combined action of PFCs in future studies to assess related health risks.
Mostrar más [+] Menos [-]Toxicokinetics of tilapia following high exposure to waterborne and dietary copper and implications for coping mechanisms
2013
Tsai, Jeng-Wei | Ju, Yun-Ru | Huang, Ying-Hsuan | Deng, Yue-Sun | Chen, Wei-Yu | Wu, Chin-Ching | Liao, Chung-Min
One of the major challenges in assessing the potential metal stress to aquatic organisms is explicitly predicting the internal dose in target organs. We aimed to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the fish alter the process of Cu uptake, depuration, and accumulation (toxicokinetics (TK)) under prolonged conditions. We measured the temporal Cu profiles in selected organs after single and combined exposure to waterborne and dietary Cu for 14 days. Quantitative relations between different sources and levels of Cu, duration of treatment, and organ-specific Cu concentrations were established using TK modeling approaches. We show that water was the main source of Cu in the gills (>94 %), liver (>89 %), and alimentary canal (>86 %); the major source of Cu in the muscle (>51 %) was food. Cu uptake and depuration in tilapia organs were mediated under prolonged exposure conditions. In general, the uptake rate, depuration rate, and net bioaccumulation ability in all selected organs decreased with increasing waterborne Cu levels and duration of exposure. Muscle played a key role in accounting for the rapid Cu accumulation in the first period after exposure. Conversely, the liver acted as a terminal Cu storage site when exposure was extended. The TK processes of Cu in tilapia were highly changed under higher exposure conditions. The commonly used bioaccumulation model might lead to overestimations of the internal metal concentration with the basic assumption of constant TK processes.
Mostrar más [+] Menos [-]Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China
2013
Schönbrodt-Stitt, Sarah | Bosch, Anna | Behrens, Thorsten | Hartmann, Heike | Shi, Xuezheng | Scholten, Thomas
In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a = 1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.
Mostrar más [+] Menos [-]Contamination of the River Ganga and its toxic implication in the blood parameters of the major carp Labeo rohita (Ham)
2013
Vaseem, Huma | Banerjee, T. K.
A field study was conducted to examine different physicochemical properties of water and various haematological and biochemical parametres of the fish Labeo rohita collected from the Ganga River (National river of India) at Varanasi district, India. The water was found to be greatly contaminated with a number of dissolved metals (Fe, Cr, Zn, Cu, Mn, Ni and Pb) whose concentrations were above the safe limits suggested by Bureau of Indian Standard (BIS 1991) for drinking water (Fe, 1,353.33 %; Cr, 456 %; Mn, 553.33 %; Ni, 4,490 % and Pb, 1,410 %). The metal accumulation in the fish blood was very high (Fe, 2,408 %; Cr, 956.57 %; Zn, 464.90 %; Cu, 310.57 %; Mn, 1,115.48 %) in comparison to the control fish maintained under strict quality control. Lower values of the various haematological parameters (total erythrocytes count, haemoglobin, haematocrit, mean corpuscular volume and O2-carrying capacity) in the river fish in comparison to the control indicate toxic manifestation exerted by the contaminated river water on the fish. The higher level of total leucocytes count further illustrates stressed condition of the river fish. The toxic impact of the Ganga water is also expressed in the fish by the presence of higher levels of cholesterol, glucose, elevated activities of the enzymes aspartate amino transferase and alanine amino transferase, and lowered protein concentration.
Mostrar más [+] Menos [-]Removal of carbamazepine and clofibric acid from water using double templates–molecularly imprinted polymers
2013
Dai, Chao-meng | Zhang, Juan | Zhang, Ya-lei | Zhou, Xue-fei | Duan, Yan-ping | Liu, Shu-guang
A novel double templates–molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using carbamazepine (CBZ) and clofibric acid (CA) as the double templates molecular and 2-vinylpyridine as functional monomer. The equilibrium data of MIP was well described by the Freundlich isotherm model. Two kinetic models were adopted to describe the experimental data, and the pseudo second-order model well-described adsorption of CBZ and CA on the MIP. Adsorption experimental results showed that the MIP had good selectivity and adsorption capacity for CBZ and CA in the presence of competitive compounds compared with non-imprinted polymer, commercial powdered activated carbon, and C18 adsorbents. The feasibility of removing CBZ and CA from water by the MIP was demonstrated using tap water, lake water, and river water.
Mostrar más [+] Menos [-]Photodegradation of 4-tert octylphenol in aqueous solution promoted by Fe(III)
2013
Wu, Yanlin | Yuan, Haixia | Wei, Guanran | Zhang, Shanduan | Li, Hongjing | Dong, Wenbo
4-Tert-octylphenol (4-t-OP), a kind of endocrine-disrupting compounds, is widely distributed in natural water surroundings but can hardly be biodegraded. The advanced oxidation processes (AOPs) have been proved to be an efficient method to degrade 4-t-OP. In this study, the photodegradation of 4-t-OP in aqueous solution promoted by Fe(III) and the photooxidation mechanism were investigated. The ferric perchlorate was added into the aqueous solution for the production of hydroxyl radical. The efficiency of mineralization was monitored by total organic carbon analyzer, and photooxidation products were determined by high-performance liquid chromatography and liquid chromatography-mass spectrometer. 4-t-OP (2.4 × 10⁻⁵ M) in aqueous solution was completely degraded after 45 min in the presence of Fe(III) (1.2 × 10⁻³ M) under UV irradiation (λ = 365 nm). The optimal pH was 3.5. Higher Fe(III) concentration or lower initial 4-t-OP concentration led to increased photodegradation efficiency of 4-t-OP. The reaction was almost completely inhibited in the presence of 2-propanol. About 70 % mineralization of the solution was obtained after 50 h. The photooxidation product was supposed to be 4-tert-octyl catechol. 4-t-OP in aqueous solution can be degraded in the presence of Fe(III) under the solar irradiation. The photoinduced degradation is due to the reaction with hydroxyl radicals. It shows that the 4-t-OP is mineralized by the inducement of Fe(III) aquacomplexes, which exposes to solar light. Therefore, the results would provide useful information for the potential application of the AOPs to remove 4-t-OP in water surroundings.
Mostrar más [+] Menos [-]Recovery of hydrogen and removal of nitrate from water by electrocoagulation process
2013
Lakshmi, Jothinathan | Sozhan, Ganapathy | Vasudevan, Subramanyan
The present study provides an optimization of electrocoagulation process for the recovery of hydrogen and removal of nitrate from water. In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. Aluminum alloy of size 2 dm² was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. The results show that a significant amount of hydrogen can be generated by this process during the removal of nitrate from water. The energy yield calculated from the hydrogen generated is 3.3778 kWh/m³. The results also showed that the maximum removal efficiency of 95.9 % was achieved at a current density of 0.25 A/dm², at a pH of 7.0. The adsorption process followed second-order kinetics model. The adsorption of NO ₃ ⁻ preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. Thermodynamic studies showed that adsorption was exothermic and spontaneous in nature. The energy yield of generated hydrogen was ~54 % of the electrical energy demand of the electrocoagulation process. With the reduction of the net energy demand, electrocoagulation may become a useful technology to treat water associated with power production. The aluminum hydroxide generated in the cell removes the nitrate present in the water and reduced it to a permissible level making the water drinkable.
Mostrar más [+] Menos [-]Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India
2013
Majumder, Aparajita | Bhattacharyya, Kallol | Kole, S. C. | Ghosh, Sagarmoy
Selected arsenic-volatilizing indigenous soil bacteria were isolated and their ability to form volatile arsenicals from toxic inorganic arsenic was assessed. Approximately 37 % of AsIII (under aerobic conditions) and 30 % AsV (under anaerobic conditions) were volatilized by new bacterial isolates in 3 days. In contrast to genetically modified organism, indigenous soil bacteria was capable of removing 16 % of arsenic from contaminated soil during 60 days incubation period while applied with a low-cost organic nutrient supplement (farm yard manure).
Mostrar más [+] Menos [-]Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids
2013
Kupur, Preeti T. | Tripathi, Rudra Deo | Singh, Rana Pratap | Dwivedi, Sanjay | Chakrabarty, D. (Debasis) | Trivedi, Prabodh K. | Adhikari, Bijan
Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0–25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC₂, PC₃ and PC₄) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs.
Mostrar más [+] Menos [-]Co-treatment of acid mine drainage with municipal wastewater: performance evaluation
2013
Hughes, Theresa A. | Gray, N. F.
Co-treatment of acid mine drainage (AMD) with municipal wastewater (MWW) using the activated sludge process is a novel treatment technology offering potential savings over alternative systems in materials, proprietary chemicals and energy inputs. The impacts of AMD on laboratory-scale activated sludge units (plug-flow and sequencing batch reactors) treating synthetic MWW were investigated. Synthetic AMD containing Al, Cu, Fe, Mn, Pb, Zn and SO4 at a range of concentrations and pH values was formulated to simulate three possible co-treatment processes, i.e., (1) adding raw AMD to the activated sludge aeration tank, (2) pre-treating AMD prior to adding to the aeration tank by mixing with digested sludge and (3) pre-treating AMD by mixing with screened MWW. Continuous AMD loading to the activated sludge reactors during co-treatment did not cause a significant decrease in chemical oxygen demand (COD), 5-day biochemical oxygen demand, or total organic carbon removal; average COD removal rates ranged from 87-93 %. Enhanced phosphate removal was observed in reactors loaded with Fe- and Al-rich AMD, with final effluent TP concentrations <2 mg/L. Removal rates for dissolved Al, Cu, Fe and Pb were 52-84 %, 47-61 %, 74-86 % and 100 %, respectively, in both systems. Manganese and Zn removal were strongly linked to acidity; removal from net-acidic AMD was <10 % for both metals, whereas removal from circum-neutral AMD averaged 93-95 % for Mn and 58-90 % for Zn. Pre-mixing with screened MWW was the best process option in terms of AMD neutralization and metal removal. However, significant MWW alkalinity was consumed, suggesting an alkali supplement may be necessary.
Mostrar más [+] Menos [-]