Refinar búsqueda
Resultados 1851-1860 de 4,291
Remediation of Radiocesium-137 Affected Soil Using Napiergrass Under Different Planting Density and Cutting Frequency Regimes
2017
Kang, Dong-Jin | Ishii, Yasuyuki | Tazoe, Hirofumi | Isobe, Katsunori | Higo, Masao | Hosoda, Masahiro | Yamada, Masatoshi | Tokonami, Shinji
This study investigated the use of napiergrass (Pennisetum purpureum Schum.) to remediate soils highly contaminated with radiocesium-137 (¹³⁷Cs) in the town of Namie, Fukushima Prefecture, which is located around 9 km northwest of the Fukushima Daiichi Nuclear Power Plant, Japan. Field experiments were performed to investigate the remediation effects using two sites (paddy or upland grassland) as replicates, three planting densities (low, medium, and high density), and two different cutting frequencies (cut once or twice a year) over 2 consecutive years. Napiergrass can be more efficient than sorghum for ¹³⁷Cs remediation. The maximum ¹³⁷Cs removal ratio (CR, %) in napiergrass achieved with high-density planting (11 plants m⁻²) was between 0.32 and 0.57%. However, cutting frequency did not affect the CR. Higher biomass leads to a dilution of ¹³⁷Cs in cutting frequency. Therefore, we suggest that the greatest CR could be achieved through a high above ground biomass (high-density planting).
Mostrar más [+] Menos [-]A Stable Fe2O3/Expanded Perlite Composite Catalyst for Degradation of Rhodamine B in Heterogeneous Photo-Fenton System
2017
Jiang, Lisha | Wang, Junting | Wu, X. (Xiaoyong) | Zhang, Gaoke
A stable and efficient Fe₂O₃/expanded perlite (Fe₂O₃-Ep) composite catalyst was synthesized by a simple hydrothermal method for degradation of refractory contaminants in heterogeneous photo-Fenton system. X-ray diffraction and FT-IR analyses confirmed the presence of the Fe₂O₃ in the synthesized catalyst. The catalytic activity of the Fe₂O₃-Ep catalyst was evaluated by the degradation of rhodamine B (RhB, 5 mg/L) and metronidazole (MET, 5 mg/L) in the presence of H₂O₂ under visible light irradiation. The Fe₂O₃-Ep catalyst exhibited high efficiency for degradation of RhB at a wide pH range from 2 to 10 and showed excellent catalytic property for decomposition of MET as well. The degradation ratio of RhB was achieved 99%, and the removal ratio of COD was 62% within 90 min at the best experimental conditions (0.5 g/L of Fe₂O₃-Ep catalyst, 2 mL/L of H₂O₂). Furthermore, iron leaching of the Fe₂O₃-Ep catalyst during the catalytic degradation reaction was negligible and the catalyst still exhibited high catalytic activity and stability after five cycles. These results show that the catalyst can be used as a highly efficient heterogeneous photo-Fenton catalyst for the degradation of non-biodegradable refractory pollutants in water.
Mostrar más [+] Menos [-]Nitrate Removal from Waters Containing Sulfate Using Autotrophic Denitrification with Sulfide Return
2017
Neshat, A. A. | Rashidi Mehrabadi, A. | Alighardashi, A. | Tajrobehkar, O.
In this study, a process has been proposed whereby the sulfide required for autotrophic denitrification is supplied by reducing the sulfate of influent water without the need to add an external sulfide source. The molar ratio of nitrate-to-sulfide was maintained at 1.6. The proposed system was operated continuously for 6 months, including two anoxic and anaerobic reactors with upward flow. The results indicate that the average amount of nitrate declined by 74%. The pH of 7–8 was more effective than a pH of 6 in removing the nitrate. As the hydraulic retention time was prolonged from 1.5 to 3 and was further prolonged to 5 h, the system efficiency was enhanced by removing the nitrate. An alkalinity consumption rate of 1.15 mg (as CaCO₃) per mg of removed NO₃ ⁻-N was achieved. In the effluent water, the increased sulfate was 6.7 mg per mg of removed NO⁻ ₃-N, while the hardness was diminished by 2.85 mg (as CaCO₃).
Mostrar más [+] Menos [-]Chromium (VI) Retrieval from Chromium Ore Processing Residues by Electrokinetic Treatment
2017
Lehoux, Alizée P. | Sanchez-Hachair, Arnaud | Lefebvre, Gaëtan | Carlier, Guillaume | Hébrard, Celine | Lima, Ana T. | Hofmann, Annette
Electrokinetics (EK) was investigated as a possible technique for in-situ treatment of leachable chromium at a built site contaminated with chromium ore processing residues (COPR). A preliminary EK experiment was carried out at the laboratory scale on an undisturbed COPR core sample. Methods applied for material and pore water characterization before and after EK treatment addressed physical aspects by laser diffraction granulometry, pycnometry and pore water content, mineralogical aspects by X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, and chemical aspects by inductively coupled plasma-atomic emission spectroscopy and atomic absorption spectroscopy for elemental composition, spectrophotometry for Cr(VI) analysis, and potentiometry for pH determination. EK was run at 1 V/cm with no external constraints on current intensity. The EK experiment reached an extraction of 72% of the total leachable Cr(VI) after only 10 days of treatment and 84% after 20 days. Material texture, composition, and pH remained similar. These results indicate that EK presents a potential solution for extracting leachable Cr(VI) from COPR sites. The impounded COPR material appeared to be heterogeneous in composition at all scales, from field to lab sample, adding to the challenge of in-situ treatment.
Mostrar más [+] Menos [-]Exogenously Applied Citric Acid Enhances Antioxidant Defense and Phytoextraction of Cadmium by Willows (Salix Spp.)
2017
Arsenov, Danijela | Zupunski, Milan | Borisev, Milan | Nikolić, Nataša | Orlovic, Sasa | Pilipovic, Andrej | Pajevic, Slobodanka
The effect of exogenously applied citric acid (CA) on phytoextraction and antioxidant defense was analyzed using willow species (Salix viminalis, S. alba, and S. matsudana) grown in soil contaminated with cadmium (Cd). Citric acid has been used as a chelating agent for the purpose of accelerating the solubility of Cd in soil and enhancing the phytoextraction of selected plants. Willows were exposed to 6 mg/kg of Cd, following the same with citric acid (20 mM/kg soil). Results revealed a positive effect of citric acid in mobilization of accumulated Cd from roots to shoots and leaves. The addition of citric acid alleviated Cd toxicity by helping plants to overcome oxidative stress, through CA’s chelating properties and the increased activity of antioxidant enzymes. Different protection strategies were evident through modification of activities of antioxidant enzymes such as catalase (CAT), ascorbate-peroxidase (APx), and guaiacol peroxidase (GPx) in young versus mature leaves in plants exposed to Cd. Furthermore, results revealed that addition of citric acid may be beneficial in the reduction of the negative effect of Cd stress on photosynthesis. The efficiency of coupling phytoextraction with the chelating agents represents a good strategy for decreasing damages caused by cadmium and has good potential in decontamination of a polluted environment.
Mostrar más [+] Menos [-]Impact of an Urban Environment on Trace Element Concentrations in Domestically Produced Lettuce (Lactuca sativa L.)
2017
Folens, Karel | Van Labeke, Marie-Christine | Du Laing, Gijs
Urban horticulture is gaining more and more attention in the context of sustainable food supply. Yet, cities are exposed to (former) industrial activities and traffic, responsible for emission of contaminants. Trace elements were monitored in soils located in the urban environment of Ghent (Belgium) and 84 samples of Lactuca satica L. lettuce grown on it. The effects of cultivation in soil versus trays, neighbouring traffic and washing of the lettuce before consumption were studied. The 0–30 cm top layer of soils appeared heterogenic in composition and enriched in Co, Cd, Ni and Pb within 10 m from the nearest road. Yet, no similar elevated concentrations could be found in the crops, except for As. Besides uptake from the roots, the presence of trace elements in the plants is also caused by the atmospheric deposition of airborne particulate matter on the leaf surface. Correlation analysis and principal component analysis (PCA) revealed that this latter transport pathway might particularly be the case for Pt, Pd and Rh. Concentrations of Cd did not exceed the 0.2 mg kg⁻¹ (fresh weight) threshold for Cd in leafy vegetables set by the European Commission. Measurements to reduce the health risks include the washing of lettuce, which effectively reduced the number of samples trespassing the maximum Pb level of 0.3 mg kg⁻¹ (fresh weight). Also, cultivation in trays resulted in a lower As content in the plants. Taking into account a vigilance on crop selection, cultivation substrate and proper washing before consumption are considered essential steps for safe domestic horticulture in urban environments.
Mostrar más [+] Menos [-]Removal of Microcystin-LR from Drinking Water Using a System Involving Oxidation and Adsorption
2017
Lopes, WiltonS. | Buriti, JosuéS. | Cebalos, BeatrizS. O. | Sousa, JoséT. | Leite, ValderiD. | Vieira, FernandoF.
The aim of the present study was to evaluate the efficiency of removal of microcystin-LR from drinking water using a three-stage bench-scale treatment comprising Fenton oxidation/coagulation/flocculation/sedimentation, filtration through a sand column (15 cm bed), and adsorption onto a granular activated carbon (GAC) column with 15-cm (GAC1) or 20-cm bed (GAC2). Optimal first-stage conditions were determined to be FeSO₄∙7H₂O 0.054 mM, H₂O₂ 0.162 mM, coagulation pH 8.4, sedimentation time 15 min, and flow rate 2 L h⁻¹. Under these conditions, water turbidity was reduced from 5.8 to 3.0 uT, apparent color from 115 to 81 uH, and the concentration of microcystin-LR from 18.52 to 9.59 μg L⁻¹. Column GAC2 was more efficient than GAC1, as shown by the higher adsorption capacity (4.15 μg g⁻¹) and lower carbon usage rate (1.70 g L⁻¹). Microcystin breakthrough occurred after 2 h of operation with GAC1 column and after 6 h with GAC2 column, and the greater efficiency of the latter column was confirmed by the high qe (4.15 μg g⁻¹) and low CUR (1.70 g L⁻¹) values attained. The results demonstrate that adsorption on a GAC column plays an essential role in reducing the concentration of microcystin-LR to levels compatible with current legislation. By-products of the Fenton oxidation of microcystin-LR were analyzed by mass spectrometry, and the ADDA amino acid present in the analyte was identified from its characteristic fragment at m/z 135. It is concluded that the combination of Fenton oxidation and adsorption on a GAC column represents a viable option for purifying eutrophic water containing high concentrations of microcystin-LR.
Mostrar más [+] Menos [-]Rinsing of Saline Water from Road Salt in a Sandy Soil by Infiltrating Rainfall: Experiments, Simulations, and Implications
2017
Higashino, Makoto | Erickson, Andrew J. | Toledo-Cossu, Francesca L. | Beauvais, Scott W. | Stefan, Heinz G.
Saline melt water from road salt applications that has percolated into a fine sandy soil in winter is rinsed out of the soil by infiltrating rainwater in the following warmer seasons. This sequence of saturated and unsaturated flow processes associated with saline water transport in a fine sandy soil was studied by simulation and exploratory laboratory experiments. Experiments in soil columns of 300-μm sand revealed that two rinses of pure water, each of one pore volume, were sufficient to reduce the salt concentration by 99% of its original value in the soil column. Simulated time variations of salt concentration in the effluent from the column agreed with experimental results. Based on simulated and experimental results, a sandy soil must become saturated to experience pore water flow in order to efficiently rinse saline snowmelt water. Depending on the saturated hydraulic conductivity and the soil depth, days, weeks, or months of freshwater infiltration in summer are needed to rinse saline melt water from an unsaturated sandy soil after road salt applications in winter. This explains findings of significant salt concentrations in surface and shallow groundwater during summer months, long after road salt application and infiltration has ceased.
Mostrar más [+] Menos [-]Organic Matter and Nutrients Removal in Tropical Constructed Wetlands Using Cyperus ligularis (Cyperaceae) and Echinocloa colona (Poaceae)
2017
Casierra-Martínez, HenryAlberto | Charris-Olmos, JhanCarlos | Caselles-Osorio, Aracelly | Parody-Muñoz, AlexanderElías
In tropical countries like Colombia, a large variety of available aquatic plants have yet to be investigated for phytodepuration processes. The aim of this study was to assess the effect of Cyper-us ligularis and Echinocloa colona¸ two local plants of Colombian Caribbean region, on removal of dissolved organic matter (COD) and nutrients (N-NH₄⁺, N-NO₃⁻ and P-PO₄⁻³) from domestic wastewater. Experiments were conducted in replicate pilot-scale Horizontal Subsurface Flow Constructed Wetlands (HSSF CWs) (0.66 m²). Four wetland treatment units were installed in parallel. Two were planted with C. ligularis and the other two remained with E. colona. The experimental system was connected to a 0.76-m³ primary sedimentation tank that fed experimental wetland treatment units. Wetlands were filled with granite gravel (~8 mm and 0.4 of porosity). During a period of 4 months, each treatment unit received a continuous loading at the rate of 42 L day⁻¹ and a hydraulic retention time of 2.3 days approximately. Wastewater samples from influent and effluents were collected three times each week in order to monitor temporal/spatial changes in removals efficiencies of COD, N-NH₄⁺, N-NO₃⁻, and P-PO₄⁻³. Results showed that removals of COD, N-NH₄⁺, and N-NO₃⁻ were not significantly different between treatments (p > 0.05). Nevertheless, P-PO₄⁻³ removal for E. colona was significantly higher than C. ligularis (p < 0.05), showing that this plant can assimilate important amounts of P. Further investigations must be conducted to evaluate the potential of native aquatic macrophytes for phytodepuration.
Mostrar más [+] Menos [-]Bioaugmentation of Soil Contaminated with Azoxystrobin
2017
Baćmaga, Małgorzata | Wyszkowska, Jadwiga | Kucharski, Jan
The presence of fungicides in the natural environment, either resulting from deliberate actions or not, has become a serious threat to many ecosystems, including soil. This can be prevented by taking appropriate measures to clear the environment of organic contamination, including fungicides. Therefore, a study was conducted aimed at determining the effect of bioaugmentation of soil exposed to azoxystrobin on its degradation and activity of selected enzymes (dehydrogenases, catalase, urease, acidic phosphatase, alkaline phosphatase). A model experiment was conducted for 90 days on two types of soil: loamy sand (pHKCₗ—5.6) and sandy loam (pHKCₗ—7.0), which were contaminated by azoxystrobin at 22.50 mg kg⁻¹ DM of soil and inoculated with a specific consortium of microorganisms. Four strains of bacteria were used in the experiment (Bacillus sp. LM655314.1, B. cereus KC848897.1, B. weihenstephanensis KF831381.1, B. megaterium KJ843149.1) and two strains of mould fungi (Aphanoascus terreus AB861677.1, A. fulvescens JN943451.1). Inoculation of soil with the consortium of microorganisms accelerated the degradation of azoxystrobin. The isolated microorganisms were more active in loamy sand because within 90 days azoxystrobin was degraded by 24% (Bacillus sp., B. cereus, B. weihenstephanensis, B. megaterium) to 78% (Aphanoascus terreus, A. fulvescens). In sandy loam, azoxystrobin was degraded by 9% (Aphanoascus terreus, A. fulvescens) to 29% (Bacillus sp., B. cereus, B. weihenstephanensis, B. megaterium and Aphanoascus terreus, A. fulvescens). The activity of soil enzymes was also changed as a result of inoculation of soil with microorganisms. The activity of all of the enzymes under study was found to have increased when soil augmentation was performed.
Mostrar más [+] Menos [-]