Refinar búsqueda
Resultados 1861-1870 de 6,560
Toxicity of nickel and cobalt in Japanese flounder Texto completo
2020
Sun, Zhaohui | Gong, Chunguang | Ren, Jiangong | Zhang, Xiaoyan | Wang, Guixing | Liu, Yufeng | Ren, Yuqin | Zhao, Yaxian | Yu, Qinghai | Wang, Yufen | Hou, Jilun
Nickel and cobalt are essential elements that become toxic at high concentrations. Little is known about nickel and cobalt toxicity in aquatic animals. This study aimed to investigate acute and chronic toxicity of nickel and cobalt in Japanese flounder (Paralichthys olivaceous), with emphasis on oxidative stress reactions, histopathological changes, and differences in gene expression. The lethal concentration for 50% mortality (LC₅₀) in 3 and 8 cm Japanese flounder exposed to nickel for 96 h was found to be 86.2 ± 0.018 and 151.3 ± 0.039 mg/L; for cobalt exposure, LC₅₀ was 47.5 ± 0.015 and 180.4 ± 0.034 mg/L, respectively. Chronic nickel and cobalt exposure caused different degrees of oxidative enzyme activity changes in gill, liver, and muscle tissues. Erythrocyte deformations were detected after acute or chronic exposure to nickel and cobalt. the nickel and cobalt exposure also caused pathological changes such as spherical swelling over other gill patches, rod-like proliferations in the gill patch epithelial cell layer, and disorder in hepatocyte arrangement, cell swelling, and cytoplasm loosening. RNA-Seq indicated that there were 184 upregulated and 185 downregulated genes in the liver of Japanese flounder exposed to 15 mg/L nickel for 28 d. For cobalt, 920 upregulated and 457 downregulated genes were detected. Among these differentially expressed genes, 162 were shared by both nickel and cobalt exposure. In both nickel and cobalt, pathways including fatty acid elongation, steroid biosynthesis, unsaturated fatty acid biosynthesis, fatty acid metabolism, PPAR signaling, and ferroptosis were significantly enriched. Taken together, these results aided our understanding of the toxicity of nickel and cobalt in aquatic animals.
Mostrar más [+] Menos [-]Acute exposure to oil induces age and species-specific transcriptional responses in embryo-larval estuarine fish Texto completo
2020
Jones, Elizabeth R. | Simning, Danielle | Serafin, Jenifer | Sepulveda, Maria S. | Griffitt, Robert J.
Because oil spills frequently occur in coastal regions that serve as spawning habitat, characterizing the effects of oil in estuarine fish carries both economic and environmental importance. There is a breadth of research investigating the effects of crude oil on fish, however few studies have addressed how transcriptional responses to oil change throughout development or how these responses might be conserved across taxa. To investigate these effects, we performed RNA-seq and pathway analysis following oil exposure 1) in a single estuarine species (Cyprinodon variegatus) at three developmental time points (embryos, yolk-sack larvae, free-feeding larvae), and 2) in two ecologically similar species (C. variegatus and Fundulus grandis), immediately post-hatch (yolk-sack stage). Our results indicate that C. variegatus embryos mount a diminished transcriptional response to oil compared to later stages, and that few transcriptional responses are conserved throughout development. Pathway analysis of larval C. variegatus revealed dysregulation of similar biological processes at later larval stages, including alteration of cholesterol biosynthesis pathways, cardiac development processes, and immune functions. Our cross-species comparison showed that F. grandis exhibited a reduced transcriptional response compared to C. variegatus. Pathway analysis revealed that the two species shared similar immune and cardiac responses, however pathways related to cholesterol biosynthesis exhibited a divergent response as they were activated in C. variegatus but inhibited in F. grandis. Our results suggest that examination of larval stages may provide a more sensitive estimate of oil-impacts than examination of embryos, and challenge assumptions that ecologically comparable species respond to oil similarly.
Mostrar más [+] Menos [-]Waterborne and dietary accumulation of well-dispersible hematite nanoparticles by zebrafish at different life stages Texto completo
2020
Huang, Bin | Cui, Yu-Qing | Guo, Wen-Bo | Yang, Liuyan | Miao, Ai-Jun
The widespread use of nanoparticles (NPs) has drawn considerable attention because of their potential toxicity and the environmental consequences thereof. However, the effects of the exposure route and life stage of an organism on the bioaccumulation and toxicity of NPs are largely unknown. In the present study, we investigated the accumulation kinetics (uptake, assimilation, and efflux) and tissue distribution of waterborne and dietary hematite NPs (HemNPs) during three life stages (embryo, larva, and adult) of the zebrafish Danio rerio. For all zebrafish life stages, the waterborne accumulation of well-dispersed HemNPs increased linearly with exposure time but decreased after reaching a maximum. The increase in HemNPs accumulation followed the order embryo > larva > adult. Compared with the waterborne route, the dietary accumulation of HemNPs in larval and adult zebrafish fluctuated, reaching a maximum after each food refreshment and then decreasing until the next food addition. Similar to waterborne exposure, adult fish accumulated less dietary HemNPs than did larvae. Nevertheless, dietary HemNPs mostly accumulated in the intestinal tract, with smaller amounts in the truncus, head, and gills, as compared with their waterborne counterparts. Moreover, in the gonad no dietary HemNPs were detected whereas accumulation via waterborne HemNPs was significant. Despite the low assimilation efficiency of dietary HemNPs, biodynamic modeling showed that the diet was the main source of particle accumulation in zebrafish. Thus, both the life stage and the exposure route should be considered in evaluations of the environmental risks of NPs.
Mostrar más [+] Menos [-]Particulate matter (PM10) enhances RNA virus infection through modulation of innate immune responses Texto completo
2020
Miśra, R̥cā | Krishnamoorthy, Pandikannan | Gangamma, S. | Raut, Ashwin Ashok | Kumar, Himanshu
Sensing of pathogens by specialized receptors is the hallmark of the innate immunity. Innate immune response also mounts a defense response against various allergens and pollutants including particulate matter present in the atmosphere. Air pollution has been included as the top threat to global health declared by WHO which aims to cover more than three billion people against health emergencies from 2019 to 2023. Particulate matter (PM), one of the major components of air pollution, is a significant risk factor for many human diseases and its adverse effects include morbidity and premature deaths throughout the world. Several clinical and epidemiological studies have identified a key link between the PM existence and the prevalence of respiratory and inflammatory disorders. However, the underlying molecular mechanism is not well understood. Here, we investigated the influence of air pollutant, PM₁₀ (particles with aerodynamic diameter less than 10 μm) during RNA virus infections using Highly Pathogenic Avian Influenza (HPAI) – H5N1 virus. We thus characterized the transcriptomic profile of lung epithelial cell line, A549 treated with PM₁₀ prior to H5N1infection, which is known to cause severe lung damage and respiratory disease. We found that PM₁₀ enhances vulnerability (by cellular damage) and regulates virus infectivity to enhance overall pathogenic burden in the lung cells. Additionally, the transcriptomic profile highlights the connection of host factors related to various metabolic pathways and immune responses which were dysregulated during virus infection. Collectively, our findings suggest a strong link between the prevalence of respiratory illness and its association with the air quality.
Mostrar más [+] Menos [-]Association between proximity to industrial chemical installations and cancer mortality in Spain Texto completo
2020
Ayuso-Álvarez, Ana | García-Pérez, Javier | Triviño Juárez, José Matías | Larrinaga-Torrontegui, Unai | González Sánchez, Mario | Ramis, Rebeca | Boldo, Elena | López-Abente, Gonzalo | Galán, Iñaki | Fernández-Navarro, Pablo
It is likely that pollution from chemical facilities will affect the health of any exposed population; however, the majority of scientific evidence available has focused on occupational exposure rather than environmental. Consequently, this study assessed whether there could have been an excess of cancer-related mortality associated with environmental exposure to pollution from chemical installations – for populations residing in municipalities in the vicinity of chemical industries. To this end, we designed an ecological study which assessed municipal mortality due to 32 types of cancer in the period from 1999 to 2008. The exposure to pollution was estimated using distance from the facilities to the centroid of the municipality as a proxy for exposure. In order to assess any increased cancer mortality risk in municipalities potentially exposed to chemical facilities pollution (situated at a distance of ≤5 km from a chemical installation), we employed Bayesian Hierarchical Poisson Regression Models. This included two Bayesian inference methods: Integrated Nested Laplace Approximations (INLA) and Markov Chain Monte Carlo (MCMC, for validation). The reference category consisted of municipalities beyond the 5 km limit. We found higher mortality risk (relative risk, RR; estimated by INLA, 95% credible interval, 95%CrI) for both sexes for colorectal (RR, 1.09; 95%CrI, 1.05–1.15), gallbladder (1.14; 1.03–1.27), and ovarian cancers (1.10; 1.02–1.20) associated with organic chemical installations. Notably, pleural cancer (2.27; 1.49–3.41) in both sexes was related to fertilizer facilities. Associations were found for women, specifically for ovarian (1.11; 1.01–1.22) and breast cancers (1.06; 1.00–1.13) in the proximity of explosives/pyrotechnics installations; increased breast cancer mortality risk (1.10; 1.03–1.18) was associated with proximity to inorganic chemical installations. The results suggest that environmental exposure to pollutants from some types of chemical facilities may be associated with increased mortality from several different types of cancer.
Mostrar más [+] Menos [-]Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil Texto completo
2020
Pei, Guangpeng | Zhu, Yuen | Wen, Junguo | Pei, Yanxi | Li, Hua
A composite material comprising of nanoscale zero-valent iron (nZVI) supported on vinegar residue (nZVI@VR) was prepared and applied for remediation of soils contaminated by hexavalent chromium (Cr(VI)). Sedimentation test results revealed that the nZVI@VR displayed enhanced stability in comparison to the bare-nZVI. Remediation experiments exhibited the immobilization efficiency of Cr(VI) and Crtotal was 98.68% and 92.09%, respectively, when using 10 g nZVI@VR (nZVI 5%) per 200 g Cr-contaminated soil (198.20 mg kg−1 Cr(VI), 387.24 mg kg−1 Crtotal) after two weeks of incubation. Further analyses demonstrated that almost all the exchangeable Cr was transformed into Fe–Mn oxide bound and organic matter bound. Moreover, the application of nZVI@VR enhanced soil organic carbon content and reduced redox potential. After granulation, the immobilization efficiency of Cr(VI) and Crtotal achieved 100% and 91.83% at a dosage of 10% granular nZVI@VR. Granular nZVI@VR also accelerated the transform of more available Cr (exchangeable and bound to carbonates) into less available fractions (Fe–Mn oxide bound and organic matter bound), thus resulting in a remarkable reduction in the Cr bioavailability. These results prove that nZVI@VR can be an effective remediation reagent for soils contaminated by Cr(VI).
Mostrar más [+] Menos [-]Trace metal effects on gross primary productivity and its associative environmental risk assessment in a subtropical lake, China Texto completo
2020
Jia, Junjie | Gao, Yang | Lu, Yao | Shi, Kun | Li, Zhaoxi | Wang, Shuoyue
The transport of trace metals in river–lake systems can potentially increase or decrease primary productivity in some basins and subsequently affect the carbon cycle of watersheds. In this study, we investigated a variety of trace metal concentrations and transport flux in the Poyang Lake basin during four seasons. Results show that the Gan River transports 78% of selenium (Se) and 42% of lead (Pb) into Poyang Lake each year, resulting in heavy metal pollution dominated by Pb and Se in 30%–75% of its water. Although toxic heavy metals, such as Pb, chromium (Cr), and copper (Cu), inhibit phytoplankton growth and decrease its gross primary productivity (GPP), excessive Se could effectually promote productivity. However, the negative effect of Pb on GPP is more significant than the positive effect of Se on GPP; hence, their interaction effectuates a decrease in total primary productivity. Additionally, under high nutrients level, the synergistic effect of heavy metals and nutrients will reduce GPP. Agricultural fertilizer is likely the source of both Pb, Cu, Se and N. Gan River contributes 35%–80% of the heavy metal inputs to Poyang Lake. It is therefore necessary to improve the ecological environment of phytoplankton and promote productivity in the Poyang Lake basin by reducing the application of agricultural chemical fertilizers to control pollution. Our results indicate that the role of certain, less studied trace elements (e.g., Pb, Cr, Cu, and Se) in regulating primary productivity of watershed ecosystems is more important than previously thought. This study also discusses potential impacting mechanisms associated with these metals on phytoplankton, whose biological functions need to be verified in future experiments.
Mostrar más [+] Menos [-]Speciation of antimony in representative sulfidic hot springs in the YST Geothermal Province (China) and its immobilization by spring sediments Texto completo
2020
Guo, Qinghai | Planer-Friedrich, Britta | Luo, Li | Liu, Mingliang | Wu, Geng | Li, Yumei | Zhao, Qian
As a well-known toxic element, antimony occurred in a wide range of concentrations in the geothermal waters discharging from Rehai and Daggyai, two representative hydrothermal areas in the Yunnan-Sichuan-Tibet Geothermal Province of China. Antimony speciation in different types of the hot springs in Rehai and Daggyai varied greatly as well, and tri- and tetrathioantimonate were detected in most neutral to alkaline Rehai hot springs. Neutral to alkaline pH, high sulfide concentrations, and high sulfide to antimony ratios were the critical factors promoting the formation of thioantimonates. The fact that no thioantimonates were detected in neutral to alkaline Daggyai hot springs is attributed to high concentrations of coexistent arsenic capable of inhibiting the thiolation of oxyantimony anions, because thioantimonates are kinetically more labile than thioarsenates. Upon discharge of the hot springs, both total aqueous antimony and arsenic decreased rapidly and substantially via immobilization to the sediments in the spring vents and their outflow channels. Some of the common iron-bearing minerals in the spring sediments, like pyrite and goethite, are known sinks for antimony and arsenic. Yet, an interesting difference was observed with antimony and iron contents in the sediment samples showing a significant correlation that was lacking for arsenic and iron contents. The explanation might be that for arsenic, sorption affinities are known to vary significantly with aqueous arsenic speciation and mineral phases. Typically, thiolation increases, and oxidation decreases arsenic mobility. Sorption experiments for antimony conducted in the present study, in contrast, showed that different antimony species were comparably sorbed to pyrite over a wide range of initial antimony concentrations and to goethite at relatively low initial antimony concentrations (but still covering the concentration range of antimony in common natural waters), so neither thiolation nor oxidation contributed significantly to the mobility of antimony in the hot springs investigated in this study.
Mostrar más [+] Menos [-]Polycyclic aromatic hydrocarbons in soils and sediments in Southwest Nigeria Texto completo
2020
Parra, Yendry Jomolca | Oloyede, Oyedibu Oyebayo | Pereira, Guilherme Martins | de Almeida Lima, Paulo Henrique Amaro | da Silva Caumo, Sofia Ellen | Morenikeji, Olajumoke Abimbola | de Castro Vasconcellos, Pérola
Polycyclic Aromatic Hydrocarbons are strongly associated with agricultural, residential, transportation, and industrial activities. This study determined by GC-MS the concentration of 15 PAHs in soil and sediments at different sites from the Awotan-Asunle dumpsite area in the Southwestern region of Nigeria, which is one of the largest dumpsites in Africa. The sources of contamination, toxicity and associated risks for human health were also evaluated. Total PAHs concentrations were from 489 to 5616 μg kg⁻¹, and 642–2159 μg kg⁻¹, for soil and sediment, respectively. For soils, the highest values were observed for indeno[1,2,3-c,d]pyrene, coronene, and phenanthrene, while for sediments, the most abundant species were pyrene, fluoranthene and phenanthrene. Diagnostic ratios were used to determine the sources of PAHs and suggested that the compounds were mainly emitted from non-traffic sources. The total BaP-TEQ and BaP-MEQ for soils did not exceed the value recommended by the Canadian guideline since the country does not present guidelines. The analysis of incremental lifetime cancer risk was high mostly for dermal and ingestion exposures in the population. This study might provide valuable information regarding exposure to PAHs in soils of a Nigerian community.
Mostrar más [+] Menos [-]Particulate air pollution in Ho Chi Minh city and risk of hospital admission for acute lower respiratory infection (ALRI) among young children Texto completo
2020
Luong, Ly Thi Mai | Dang, Tran Ngoc | Thanh Huong, Nguyen Thi | Phùng, Dũng | Tran, Long K. | Van Dung, Do | Thai, Phong K.
High levels of air pollutants in Vietnam, especially particulate matters including PM₂.₅, can be important risk factors for respiratory diseases among children of the country. However, few studies on the effects of ambient air pollution on human health have been conducted in Vietnam so far. The aim of this study is to examine the association between PM₂.₅ and hospital admission due to acute lower respiratory infection (ALRI) among children aged < 5 years old in Ho Chi Minh city, the largest city of Vietnam. Data relating PM₂.₅ and hospital admission were collected from February 2016–December 2017 and a time series regression analysis was performed to examine the relationship between PM₂.₅ and hospital admission including the delayed effect up to three days prior to the admission. We found that each 10 μg/m³ increase in PM₂.₅ was associated with an increase of 3.51 (95%CI: 0.96–6.12) risk of ALRI admission among children. According to the analysis, male children are more sensitive to exposure to PM₂.₅ than females, while children exposed to PM₂.₅ are more likely to be infected with acute bronchiolitis than with pneumonia. The study demonstrated that young children in HCMC are at increased risk of ALRI admissions due to the high level of PM₂.₅ concentration in the city's ambient air.
Mostrar más [+] Menos [-]