Refinar búsqueda
Resultados 1861-1870 de 7,921
Toxicological effects of deltamethrin on quail cerebrum: Weakened antioxidant defense and enhanced apoptosis
2021
Li, Jiayi | Jiang, Huijie | Wu, Pengfei | Li, Siyu | Han, Bing | Yang, Qingyue | Wang, Xiaoqiao | Han, Biqi | Deng, Ning | Qu, Bing | Zhang, Zhigang
Deltamethrin is the most common type II synthetic pyrethroid insecticide, and has posed widespread residues to environment. However, whether deltamethrin has potential toxic effects on quail cerebrum remains greatly obscure. Accordingly, we investigated the impact of chronic exposure to deltamethrin on oxidative stress and apoptosis in quail cerebrum. Quails upon 12-week exposure of deltamethrin (0, 15, 30, or 45 mg/kg body weight intragastric administration) were used as a cerebrum injury model. The results showed that deltamethrin treatment led to cerebral injury dose-dependently through the weakened antioxidant defense by downregulating nuclear factor erythroid-2-related factor 2 (Nrf2) and its downstream proteins levels and mRNA expression. Furthermore, deltamethrin treatment induced apoptosis in cerebrum by decreasing B-cell lymphoma gene 2 (Bcl-2) level, as well as increasing Jun N-terminal kinase3, caspase-3, and Bcl-2-associated X protein levels. Simultaneously, toll-like receptor 4 (TLR4) downstream inflammation-related genes or proteins were significantly up-regulated by deltamethrin dose-dependently. Altogether, our study demonstrated that chronic exposure to deltamethrin induces inflammation and apoptosis in quail cerebrums by promoting oxidative stress linked to inhibition of the Nrf2/TLR4 signaling pathway. These results provide a novel knowledge on the chronic toxic effect of deltamethrin, and establish a theoretical foundation for the evaluation of pesticide-induced health risk.
Mostrar más [+] Menos [-]Highly elevated levels, infant dietary exposure and health risks of medium-chain chlorinated paraffins in breast milk from China: Comparison with short-chain chlorinated paraffins
2021
Xu, Chi | Wang, Kunran | Gao, Lirong | Zheng, Minghui | Li, Jingguang | Zhang, Lei | Wu, Yongning | Qiao, Lin | Huang, Di | Wang, Shuang | Li, Da
Short-chain chlorinated paraffins (SCCPs) are persistent organic pollutants which are toxic to human. Median-chain chlorinated paraffins (MCCPs) have similar toxicity to SCCPs. The productions of chlorinated paraffins (CPs) in China were 1 million tons in 2013 and remained high after that, which may lead to high risks for human exposure to CPs. To investigate temporal trends and health risks of SCCPs and MCCPs in breast milk in China, samples (n = 2020) were collected from urban and rural areas of 11 Chinese provinces in 2017 and mixed into 42 pooled samples. SCCPs and MCCPs were analyzed by two-dimensional gas chromatography with electron-capture negative-ionization mass spectrometry (GC × GC-ECNI-MS). The MCCP concentrations (median (range)) were 472 (94–1714) and 567 (211–1089) ng g⁻¹ lipid in urban and rural areas, respectively, which showed continuously rapidly increasing during 2007–2017. The SCCP concentrations (median (range)) were 393 (131–808) and 525 (139–1543) ng g⁻¹ lipid in urban and rural areas, respectively. The results showed SCCP levels decreased in urban areas between 2007 and 2017. Significant increases in MCCP/SCCP ratios might arise from extensive manufacturing and use of MCCPs. The median estimated dietary intake via breast milk in urban and rural samples were 1230 and 2510 ng kg⁻¹ d⁻¹, respectively, for SCCPs and 2150 and 1890 ng kg⁻¹ d⁻¹, respectively, for MCCPs. Preliminarily risk assessment showed that SCCPs posed a significant health risk to infants via breastfeeding. The high MCCP levels should also be of concern because of continuous growth and negative effect on infants. Correspondence analysis indicated congeners with higher carbon and chlorine numbers in dietary tend to accumulate in breast milk.
Mostrar más [+] Menos [-]Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions
2021
Numpilai, Thanapha | Cheng, Chin Kui | Seubsai, Anusorn | Faungnawakij, Kajornsak | Limtrakul, Jumras | Witoon, Thongthai
Recycling of waste glycerol derived from biodiesel production to high value-added chemicals is essential for sustainable development of Bio-Circular-Green Economy. This work studied the conversion of glycerol to 1,3-propanediol over Pt/WOₓ/Al₂O₃ catalysts, pointing out the impacts of catalyst pore sizes and operating conditions for maximizing the yield of 1,3-propanediol. The results suggested that both pore confinement effect and number of available reactive metals as well as operating conditions determined the glycerol conversion and 1,3-propanediol selectivity. The small-pore 5Pt/WOₓ/S–Al₂O₃ catalyst (6.1 nm) gave a higher Pt dispersion (32.0%), a smaller Pt crystallite size (3.5 nm) and a higher number of acidity (0.47 mmol NH₃ g⁻¹) compared to those of the large-pore 5Pt/WOₓ/L-Al₂O₃ catalyst (40.3 nm). However, glycerol conversion and 1,3-propanediol yield over the small-pore 5Pt/WOₓ/S–Al₂O₃ catalyst were significantly lower than those of the large-pore Pt/WOₓ/L-Al₂O₃ catalyst, suggesting that the diffusional restriction within the small-pore catalyst suppressed transportation of molecules to expose catalytic active sites, favoring the excessive hydrogenolysis of 1,3-propanediol, giving rise to undesirable products. The best 1,3-propanediol yield of 32.8% at 78% glycerol conversion were achieved over the 5Pt/WOₓ/L-Al₂O₃ under optimal reaction condition of 220 °C, 6 MPa, 5 h reaction time and amount of catalyst to glycerol ratio of 0.25 g mL⁻¹. However, the 1,3-propanediol yield and glycerol conversion decreased to 19.6% and 51% after the 4th reaction-regeneration which were attributed to the carbonaceous deposition and the agglomeration of Pt particles.
Mostrar más [+] Menos [-]A societal transition of MSW management in Xiamen (China) toward a circular economy through integrated waste recycling and technological digitization
2021
Kurniawan, Tonni Agustiono | Lo, Waihung | Singh, Deepak | Othman, Mohd Hafiz Dzarfan | Ram Avtar, | Hwang, Goh Hui | Albadarin, Ahmad B. | Kern, Axel Olaf | Shirazian, Saeed
Recently Xiamen (China) has encountered various challenges of municipal solid waste management (MSWM) such as lack of a complete garbage sorting and recycling system, the absence of waste segregation between organic and dry waste at source, and a shortage of complete and clear information about the MSW generated. This article critically analyzes the existing bottlenecks in its waste management system and discusses the way forward for the city to enhance its MSWM by drawing lessons from Hong Kong’s effectiveness in dealing with the same problems over the past decades. Solutions to the MSWM problem are not only limited to technological options, but also integrate environmental, legal, and institutional perspectives. The solutions include (1) enhancing source separation and improving recycling system; (2) improving the legislation system of the MSWM; (3) improvement of terminal disposal facilities in the city; (4) incorporating digitization into MSWM; and (5) establishing standards and definitions for recycled products and/or recyclable materials. We also evaluate and compare different aspects of MSWM in Xiamen and Hong Kong SAR (special administrative region) under the framework of ‘One Country, Two Systems’ concerning environmental policies, generation, composition, characteristics, treatment, and disposal of their MSW. The nexus of society, economics of the MSW, and the environment in the sustainability sphere are established by promoting local recycling industries and the standardization of recycled products and/or recyclable materials. The roles of digitization technologies in the 4ᵗʰ Industrial Revolution for waste reduction in the framework of circular economy (CE) are also elaborated. This technological solution may improve the city’s MSWM in terms of public participation in MSW separation through reduction, recycle, reuse, recovery, and repair (5Rs) schemes. To meet top-down policy goals such as a 35% recycling rate for the generated waste by 2030, incorporating digitization into the MSWM provides the city with technology-driven waste solutions.
Mostrar más [+] Menos [-]Exposure of Chinese adult females to parabens from personal care products: Estimation of intake via dermal contact and health risks
2021
Li, Chun | Zhao, Yang | Liu, Shan | Yang, Dongfeng | Ma, Huimin | Zhu, Zhou | Kang, Li | Lu, Shaoyou
Parabens are added into foodstuffs, pharmaceuticals and personal care products (PCPs) as additives extensively due to their excellent antiseptic and antibacterial effects. In the past decade, parabens have raised great concerns on their potential harm to humans. Existing studies have suggested positive correlations between PCP application and urinary paraben concentrations in females, but little is known about paraben exposure levels and health risks arising from PCP use. In this study, 150 PCP samples covering eleven categories were collected from South China and measured for the concentrations of five parabens, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP) and benzyl paraben (BeP). Parabens were widely detected in PCPs, with a detection frequency of 100%, 99.3%, 80.0%, 74.0% and 13.3%, for MeP, EtP, PrP, BuP and BeP, respectively. The median concentration of Σ₅parabens was 126 μg/g with a range of 6.38–424 μg/g across all PCP samples. The contents of MeP, EtP and PrP measured in leave-on PCPs were obviously higher than those in the rinse-off ones (p < 0.05). MeP and PrP were the main paraben analogues, together accounting for 93.6% of Σ₅parabens in all PCPs. The daily intakes of parabens through dermal absorption by Chinese adult females estimated by measurements obtained in the present study were 0.15 and 83.2 μg/kg-bw/day on basis of the application of rinse-off and leave-on PCPs, respectively. Among the eleven categories, sunscreen, body lotion and mask constituted the main exposure sources of parabens to females. The hazard quotients of parabens were far less than 1, indicating no considerable health risk for Chinese adult females.
Mostrar más [+] Menos [-]Catalytic upgrading of Quercus Mongolica under methane environment to obtain high yield of bioaromatics
2021
Farooq, Abid | Moogi, Surendar | Kwon, Eilhann E. | Lee, Jechan | Kim, Young-Min | Jae, Jungho | Jung, Sang-Chul | Park, Young-Kwon
This work investigated the impact of pyrolysis medium and catalyst on the production of bio-BTX (benzene, toluene, and xylene) from Quercus Mongolica (Q. Mongolica) via catalytic pyrolysis. Two different pyrolysis media (N₂ and CH₄) and five different zeolite catalysts (HY, HBeta, HZSM-5, 1 wt% Ni/HZSM-5, and 1 wt% Ga/HZSM-5) were considered for the Q. Mongolica pyrolysis. The HZSM-5 yielded more BTX than the HY and HBeta due to its strong acidity. The employment of CH₄ as the pyrolysis medium improved the BTX yield (e.g., 2.7 times higher total BTX yield in CH₄ than in N₂) and resulted in low coke yield (e.g., 5.27% for N₂-pyrolysis and 2.57% for CH₄-pyrolysis) because the CH₄-drived hydrogen simulated a hydropyrolysis condition and facilitated dehydroaromatization reaction. CH₄ also led to direct coupling, Diels-Alder, and co-aromatization reactions during the pyrolysis, contributing to enhancing the BTX yield. The addition of Ga to the HZSM-5 could further increase the BTX yield by means of facilitating hydrocracking/demethylation and methyl radical formation from CH₄ assisting the generation of >C2 alkenes that could be further converted into BTX on acid sites of the HZSM-5.
Mostrar más [+] Menos [-]Simultaneous changes of exogenous dissolved organic matter treated by ozonation in properties and interaction behavior with sulfonamides
2021
Lai, Chaochao | He, Caiwen | Han, Fengxia | Xu, Huayu | Huang, Bin | Dionysiou, Dionysios D. | Pan, Xuejun
Effluent is often treated with ozone before being discharged into a natural water environment. This process will change the interaction between effluent organic matter and pollutants in aquatic environment. The impact of ozonation on complexation between dissolved organic matter in such wastewater and sulfadimidine often found in natural water was studied in laboratory experiments using four types of real wastewater. Ozonation was found to decrease the proportion of organic matter with a molecular weight greater than 5 kDa as well as protein-like, fulvic-like and humic-like components, but except the proportion of hydrophilic components. The aromaticity of the dissolved organic matter was also reduced after ozonation. The complexation of tryptophan and tyrosine with sulfadimidine mainly depends on their hydrophobicity and large molecular weight. Ozonation of fulvic and humic acid tends to produce small and medium molecular weight hydrophilics. The complexation of humic and fulvic acids with sulfadimidine was enhanced by ozonation. Dissolved organic matter, with or without oxidation, were found to weaken sulfadimidine’s inhibition of microbial growth, especially for Aeromonas and Acinetobacter species. This finding will expand our understanding about the impact of advanced treatment processes on the dissolved organic matters’ properties in effluent.
Mostrar más [+] Menos [-]The cotreatment of old landfill leachate and domestic sewage in rural areas by deep subsurface wastewater infiltration system (SWIS): Performance and bacterial community☆
2021
Chen, Fengming | Li, Guowen | Li, Xiaoguang | Wang, Hongqiang | Wu, Huabin | Li, Jiaxi | Li, Caole | Li, Wei | Zhang, Lieyu | Xi, Beidou
In this work, two deep subsurface wastewater infiltration systems (SWISs) were constructed and fed with domestic sewage (control system, S1) and mixed wastewater consisting of old landfill leachate and domestic sewage (experimental system, S2). S1 and S2 exhibited favorable removal efficiencies, with TP (98.8%, 98.7%), COD (87.6%, 86.9%), NH₄⁺-N (99.8%, 99.9%) and TN (99.2%, 98.9%). Even when increasing the pollutant load in S2 by adding old landfill leachate, the almost complete removal performance could be maintained in terms of low effluent concentrations and even increased in terms of load removal capabilities, which included COD (19.4, 25.9 g∙m⁻²·d⁻¹), NH₄⁺-N (8.2, 19.9 g∙m⁻²·d⁻¹), TN (8.9, 20.6 g∙m⁻²·d⁻¹). To investigate the transformation of dissolved organic matter along depth, Three-Dimensional Excitation Emission Matrix fluorescence spectroscopy combined with Fluorescence Regional Integration analysis was applied. The results showed that PⅠ,ₙ and PⅡ,ₙ (the proportions of biodegradable fractions) increased gradually from 6.59% to 21.8% at S2_20 to 10.8% and 27.7% at S2_110, but PⅢ,ₙ and PⅤ,ₙ (the proportions of refractory organics) declined from 23.1% to 27.8% at S2_20 to 21.1% and 16.4% at S2_110, respectively. In addition, high-throughput sequencing technology was employed to observe the bacterial community at different depths, and the predicted functional potential of the bacterial community was analyzed by PICRUSt. The results showed that the genera Flavobacterium, Pseudomonas, Vogesella, Acinetobacter and Aquabacterium might be responsible for refractory organic degradation and that their products might serve as the carbon source for denitrifiers to achieve simultaneous nitrate and refractory organic removal. PICRUSt further demonstrated that there was a mutual response between refractory organic degradation and denitrification. Overall, the combined treatment of domestic sewage and old leachate in rural areas by SWIS is a promising approach to achieve comprehensive treatment.
Mostrar más [+] Menos [-]Size matters: Zebrafish (Danio rerio) as a model to study toxicity of nanoplastics from cells to the whole organism
2021
Sendra, M. | Pereiro, P. | Yeste, M.P. | Mercado, L. | Figueras, A. | Novoa, B.
The contamination of the aquatic environment by plastic nanoparticles is becoming a major concern due to their potential adverse effects in aquatic biota. Therefore, in-depth knowledge of their uptake, trafficking and effects at cellular and systemic levels is essential to understand their potential impacts for aquatic species. In this work, zebrafish (Danio rerio) was used as a model and our aims were: i) to determine the distribution, uptake, trafficking, degradation and genotoxicity of polystyrene (PS) NPs of different sizes in a zebrafish cell line; ii) to study PS NPs accumulation, migration of immune cells and genotoxicity in larvae exposed to PS NPs; and iii) to assess how PS NPs condition the survival of zebrafish larvae exposed to a pathogen and/or how they impact the resistance of an immunodeficient zebrafish. Our results revealed that the cellular distribution differed depending on the particle size: the 50 nm PS NPs were more homogeneously distributed in the cytoplasm and the 1 μM PS NPs more agglomerated. The main endocytic mechanisms for the uptake of NPs were dynamin-dependent internalization for the 50 nm NPs and phagocytosis for the 1 μm nanoparticles. In both cases, degradation in lysosomes was the main fate of the PS NPs, which generated alkalinisation and modified cathepsin genes expression. These effects at cellular level agree with the results in vivo, since lysosomal alkalization increases oxidative stress and vice versa. Nanoparticles mainly accumulated in the gut, where they triggered reactive oxygen species, decreased expression of the antioxidant gene catalase and induced migration of immune cells. Finally, although PS NPs did not induce mortality in wild-type larvae, immunodeficient and infected larvae had decreased survival upon exposure to PS NPs. This fact could be explained by the mechanical disruption and/or the oxidative damage caused by these NPs that increase their susceptibility to pathogens.
Mostrar más [+] Menos [-]Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress
2021
Yu, Longtao | Yang, Heyan | Cheng, Fuping | Wu, Zhihao | Huang, Qiang | He, Xujiang | Yan, Weiyu | Zhang, Lizhen | Wu, Xiaobo
Mites are considered the worst enemy of honey bees, resulting in economic losses in agricultural production. In apiculture, flumethrin is frequently used to control mites. It causes residues of flumethrin in colonies which may threaten honey bees, especially for larvae. Still, the impact of flumethrin-induced dysbiosis on honey bees larval health has not been fully elucidated, and any impact of microbiota for decomposing flumethrin in honey bees is also poorly understood. In this study, 2-day-old larvae were fed with different flumethrin-sucrose solutions (0, 0.5, 5, 50 mg/kg) and the dose increased daily (1.5, 2, 2.5 and 3 μL) until capped, thereafter the expression level of two immune genes (hymenoptaecin, defensin1) and two detoxication-related genes (GST, catalase) were measured. Meanwhile, the effect of flumethrin on honey bee larvae (Apis mellifera) gut microbes was also explored via 16S rRNA Illumina deep sequencing. We found that flumethrin at 5 mg/kg triggered the over expression of immune-related genes in larvae, while the larval detoxification-related genes were up-regulated when the concentrations reached 50 mg/kg. Moreover, the abundance and diversity of microbes in flumethrin-treated groups (over 0.5 mg/kg) were significantly lower than control group, but it increased with flumethrin concentrations among the flumethrin-treated groups. Our results revealed that microbes served as a barrier in the honey bee gut and were able to protect honey bee larvae to a certain extent, and reduce the stress of flumethrin on honey bee larvae. In addition, as the concentration of flumethrin increases, honey bee larvae activate their immune system then detoxification system to defend against the potential threat of flumethrin. This is the first report on the impact of flumethrin on gut microbiota in honey bees larvae. The findings revealed new fundamental insights regarding immune and detoxification of host-associated microbiota.
Mostrar más [+] Menos [-]