Refinar búsqueda
Resultados 191-200 de 4,936
Tissue level distribution of toxic and essential elements during the germination stage of corn seeds (Zea mays, L.) using LA-ICP-MS Texto completo
2019
Gaiss, Shelby | Amarasiriwardena, Dulasiri | Alexander, David | Wu, Fengchang
Both essential and toxic metal contaminants impact agricultural crops by bioaccumulation in plants. The goal of this study was to evaluate the tissue-level spatial distribution of metal(loids) in corn seeds (Zea mays, L.) from contaminated corn fields near the Xikuangshan (XKS) antimony mine in Hunan, China, and compared them with corn (Zea mays everta L., popcorn) grown in a farm in Amherst, MA that practices sustainable farming as a control. How toxic and essential metals translocate through the roots and shoots during early stages of germination was also investigated. The cleaned corn seed samples were mounted in resin blocks and longitudinally dissected into thin sections. The laser ablation parameters were optimized, and the instrument was calibrated using tomato leaf standard reference material (NIST SRM 1573a) in a pellet form. Tissue level distributions of metal(loid)s As, Cd, Hg, Sb and Zn in corn seeds collected were determined using (LA-ICP-MS). Seeds from the control farm were germinated and their roots and shoots were analyzed to determine tissue level concentrations and their spatial distributions. It was found that seeds from the XKS mine region in China had higher overall concentration of all elements analyzed due to metal(loids) absorbed from contaminated mine soils. Metal(loids) concentrations were highest in the embryo (∼360 mg/kg) and pericarp (∼0.48 mg/kg) compared with the endosperm of corn seeds. Essential element Zn was found in the embryo and emerging coleoptile and radicle. Finally, in both roots and shoots, element concentrations were highest proximally to the tip cap compared to distal concentrations and later translocated to distal tissue regions. This study offers unique insights of metal(loid) bioaccumulation and translocation in corn and thus is better able to track metal(loids) contaminants trafficking in our food systems.
Mostrar más [+] Menos [-]Prediction of organic contaminant uptake by plants: Modified partition-limited model based on a sequential ultrasonic extraction procedure Texto completo
2019
Wu, Xiang | Zhu, Lizhong
Predicting the translocation of organic contaminants to plants is crucial to ensure the quality of agricultural goods and assess the risk of human exposure through the food web. In this study, the performance of a modified plant uptake model was evaluated considering a number of chemicals, such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), with a range of physicochemical properties; different plant species (Ipomoea aquatica Forsk (swamp morning glory), Chrysanthemum coronarium L. (crown daisy), Zea mays L. (corn), Brassica rapa pekinensis (Chinese cabbage), Cucurbita moschata (pumpkin), Raphanus sativus L. (radish), Spinacia oleracea L. (spinach) and Capsicum annuum L. (pepper)); and different types of soil (paddy soil, laterite soil and black soil). The biases of predictions from a previously used partition-limited model were −76.4% to −99.9% relative to the measured concentrations. An overall transmission factor (αtf=0.39), calculated from a linear regression of the measured bioavailable fraction (Cbᵢₒ) and the total concentration in plants, was considered a crucial modification and was included in the modified model. Cbᵢₒ was found to better represent the chemical content available in soil for root uptake. The results from this study improve the accuracy of predictions for vegetation-uptake assessments by modifying the partition-limited model and then validating the modified model using comparisons between predicted data and measured values. The accuracy of the concentrations of organic contaminants in plants improved: when using the modified model, 89.5% of the predictions were within 40% of the actual value. The average bias was limited to 1.5%–30.5%. The model showed great potential to predict plant uptake using the bioavailable fraction concentration in soil.
Mostrar más [+] Menos [-]Phosphate treatment alleviated acute phytotoxicity of heavy metals in sulfidic Pb-Zn mine tailings Texto completo
2019
Saavedra-Mella, Felipe | Liu, Yunjia | Southam, Gordon | Huang, Longbin
Phytostabilization of sulfidic PbZn tailing landscapes may be one of interim options of tailings management, but which is limited by acute phytotoxicity of heavy metals in the tailings. The present study aimed to investigate the effectiveness of soluble phosphate (i.e., K2HPO4) in immobilizing soluble Pb, Cd and Zn and lowering their acute phytotoxicity. The addition of soluble phosphate improved the growth of native plants Acacia chisholmii and survival rate of A. ligulata, where the latter exhibited 100% survival rate. This was in contrast to effects of conventional organic amendment in the tailings on metal solubility (e.g., elevated metal levels in porewater) and plant survival (e.g., only 42%). Organic amendment with mulch did not lower the levels of water-soluble Cd, Pb and Zn and their concentrations in plant tissues after 56 days of plant growth in the treatment. In contrast, the tailings amended with K2HPO4 significantly decreased metal concentrations in the porewater and plant tissues by about 80–92% and 56–88%, respectively. The metal immobilization by phosphate was due to the formation of insoluble or sparingly soluble metal (Pb, Cd and Zn)-phosphate minerals in the tailings with circumneutral pH conditions, as revealed by using X-ray diffraction and scanning electron microanalyses. The reduced metal concentrations in roots and shoots of Acacia species after direct root contact with the K2HPO4 amended tailings suggested that metals (i.e., Pb, Cd and Zn) were effectively immobilized by the phosphate treatment of the tailings. These findings indicate that addition of high dosage of soluble phosphate may provide a low cost option to treat sulfidic PbZn tailings for rapid phytostabilization of the tailings surface, as an interim option to manage environmental risks of sulfidic PbZn tailings.
Mostrar más [+] Menos [-]Diurnal and seasonal variations of greenhouse gas emissions from a commercial broiler barn and cage-layer barn in the Canadian Prairies Texto completo
2019
Huang, Dandan | Guo, Huiqing
Baseline emission values of greenhouse gases were not well established for commercial poultry barns in cold regions, including Canada, due to a lack of well-designed field studies. Emission factors of carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), were acquired for a commercial broiler barn and cage-layer barn in the Canadian Prairies climate. Between March 2015 and February 2016, monthly measurements throughout the year for the layer barn and over 6 flocks for the broiler barn, and diurnal measurements in the mild, warm, and cold seasons for both barns were conducted, respectively. The ventilation rate was estimated based on a CO₂ mass balance method; thus CO₂ emissions were quantified by the CIGR (2002) models. The CH₄ and N₂O emissions present at low levels from global perspective for both barns; the cold climate proved to be a major reason for the lower CH₄ emission from the layer barn. Considerable seasonal effect was observed only for N₂O emissions from the broiler barn, and for CH₄ and N₂O emissions from the layer barn, both with higher emissions in the mild and warm seasons than in the cold season. The big diurnal variations of CO₂ emissions for the layer barn demonstrated the uncertainty of the seasonal results by snapshot measurements and correction factors (from −20.9% to −22.5%) were obtained. Besides, the difference of CH₄ and N₂O concentrations and emissions as well as CO₂ concentrations between best-case (the first day after manure removal) and worst-case conditions (the last day before manure removal) was not obvious for the layer barn. Additionally, changes of temperature and ventilation rate were likely to have more impact on N₂O emission for the broiler barn and more impact on CH₄ emission for the layer barn than on the other two gas emissions, both with positive correlations.
Mostrar más [+] Menos [-]Effect of crude oil-induced water repellency on transport of Escherichia coli and bromide through repacked and physically-weathered soil columns Texto completo
2019
Moradi, A. | Mosaddeghi, M.R. | Chavoshi, E. | Safadoust, A. | Soleimani, M.
Knowledge of the transport and fate of pathogenic Escherichia coli, especially in the areas contaminated with crude oil, is required to assess contamination of shallow groundwater resources. The present study aims to investigate the effect of crude oil-mediated water repellency on the movement of nalidixic acid-resistant Escherichia coli strain (E. coli NAR) and bromide (Br) as an inert tracer in two soil types. The soils were contaminated at three levels of 0, 0.5 and 1% w/w of total petroleum hydrocarbons (TPHs) using crude oil. Steady-state saturated flow in the soil columns was controlled using a tension infiltrometer. Leaching experiments were conducted through the columns of repacked (un-weathered) and physically-weathered clay loam (CL) and sandy loam (SL) soils. The columns leachate was sampled at specific times for 4 pore volumes. The shape of breakthrough curves for the E. coli NAR and Br depended on soil texture and structure and the TPHs level. Preferential flow in the crude oil-mediated water-repellent soils facilitated the transport of contaminants especially E. coli NAR. Filtration coefficient and relative adsorption index of bacteria were greatest in the repacked CL soils and were lowest in the weathered SL soils. Discontinuity of soil pores and lower flow velocity resulted in greater filtration of E. coli NAR in the repacked CL soil than other treatments. Physical weathering induced the formation of aggregates which reduced soil particle surfaces available for retention of water-repellent oil and contaminants. Movement of both bacteria and Br tracer in the weathered SL soil with 1% TPHs was higher than other treatments. This finding was attributed to low specific surface area, continuity of the pores and water repellency-mediated preferential pathways in the weathered SL soil columns. Our findings implied that shallow groundwater resources could be very sensitive to microbial contamination particularly in the oil-mediated water-repellent soils.
Mostrar más [+] Menos [-]Forage fish and polycyclic aromatic compounds in the Fort McMurray oil sands area: Body burden comparisons with environmental distributions and consumption guidelines Texto completo
2019
Evans, M.S. | McMaster, M. | Muir, D.C.G. | Parrott, J. | Tetreault, G.R. | Keating, J.
The Fort McMurray region in northeastern Alberta (Canada) is rich in natural sources of polycyclic aromatic compounds (PACs) from exposed bitumen beds; anthropogenic sources are being released with increased oil sands industry expansion. Here we report on investigations of PACs (47 compounds) in three species of forage fish collected during the 2012–2013 Joint Oil Sands Monitoring Program (JOSMP) fish health investigations and compare results with PAC data for sediment and water collected under JOSMP and earlier programs. PAC concentrations in sediments varied three orders in magnitude and were highest at downstream tributary mouths, which flowed through the exposed McMurray Formation, and along reaches of the Athabasca River where the formation was exposed. PAC concentrations in water were less variable but with higher concentrations near exposed bitumen beds. Forage fish exhibited the weakest spatial gradients in ΣPACs concentration, which averaged 102 ± 32 ng/g in trout-perch from the Athabasca River, 125 ± 22 ng/g in lake chub from the Ells River, and 278 ± 267 ng/g in slimy sculpin from the Steepbank, Firebag, and Dunkirk Rivers. Low-molecular weight compounds, particularly naphthalenes and fluorenes, dominated fish PACs. Phenanthrenes occurred in greater percent composition in fish caught in areas where PAC concentrations in sediments were higher due to the proximity of bitumen sources than in other areas. Dibenzothiophene, a major component of bitumen PAC, was a minor component of fish ΣPACs. Forage fish PAC concentrations were below fish consumption guidelines established by the European Commission (2011) and for the reopening of the commercial fisheries closed by the Deepwater Horizon oil spill. PAC concentrations in forage fish were similar to concentrations observed in many other studies (fish market surveys, estuaries, and marine waters) and lower than in fish sampled from highly impacted areas (near refineries, harbors, and other industrialized areas).
Mostrar más [+] Menos [-]A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure Texto completo
2019
Gierer, Fiona | Vaughan, Sarah | Slater, Mark | Thompson, Helen M. | Elmore, J Stephen | Girling, Robbie D.
In recent years, the impact of Plant Protection Products (PPPs) on insect pollinator decline has stimulated significant amounts of research, as well as political and public interest. PPP residues have been found in various bee-related matrices, resulting in governmental bodies worldwide releasing guidance documents on methods for the assessment of the overall risk of PPPs to different bee species. An essential part of these risk assessments are PPP residues found in pollen and nectar, as they represent a key route of exposure. However, PPP residue values in these matrices exhibit large variations and are not available for many PPPs and crop species combinations, which results in inaccurate estimations and uncertainties in risk evaluation. Additionally, residue studies on pollen and nectar are expensive and practically challenging. An extrapolation between different cropping scenarios and PPPs is not yet justified, as the behaviour of PPPs in pollen and nectar is poorly understood. Therefore, this review aims to contribute to a better knowledge and understanding of the fate of PPP residues in pollen and nectar and to outline knowledge gaps and future research needs. The literature suggests that four primary factors, the crop type, the application method, the physicochemical properties of a compound and the environmental conditions have the greatest influence on PPP residues in pollen and nectar. However, these factors consist of many sub-factors and initial effects may be disguised by different sampling methodologies, impeding their exact characterisation. Moreover, knowledge about these factors is ambiguous and restricted to a few compounds and plant species. We propose that future research should concentrate on identifying relationships and common features amongst various PPP applications and crops, as well as an overall quantification of the described parameters; in order to enable a reliable estimation of PPP residues in pollen, nectar and other bee matrices.
Mostrar más [+] Menos [-]Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting Texto completo
2019
Guo, Honghong | Gu, Jie | Wang, Xiaojuan | Yu, Jing | Nasir, Mubasher | Peng, Huiling | Zhang, Ranran | Hu, Ding | Wang, Qianzhi | Ma, Jiyue
The application of compost in agriculture has led to the accumulation of antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) in the soil environment. In this study, the response of ARGs and MRGs to bamboo charcoal (BC) and bamboo vinegar (BV) during aerobic composting was investigated. Results showed that BC + BV treatment reduced the abundances of ARGs and mobile genetic elements (MGEs) during the thermophilic period, as well as achieved the lowest rebound during the cooling period. BC + BV promoted the growth of Firmicutes, thereby facilitating the thermophilic period of composting. The rebound of ARGs and MGEs can be explained by increasing the abundance of Actinobacteria and Proteobacteria at the end of composting. Composting reduced the abundances of MRGs comprising pcoA, tcrB, and cueO, whereas cusA and copA indicated the selective pressure imposed by heavy metals on bacteria. The fate of ARGs was mainly driven by MGEs, and heavy metals explained most of the variation in MRGs. Interestingly, nitrogen conversion also had an important effect on ARG and MRG profiles. Our current findings suggest that the addition of BC + BV during compost preparation is an effective method in controlling the mobility of ARGs and MRGs, thereby reducing the environmental problems.
Mostrar más [+] Menos [-]Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits Texto completo
2019
Rusinowski, S. | Krzyżak, J. | Sitko, K. | Kalaji, H.M. | Jensen, E. | Pogrzeba, M.
The objective of this study was to evaluate the potential of three C4 perennial grasses (Miscanthus x giganteus, Panicum virgatum and Spartina pectinata) for biomass production on arable land unsuitable for food crop cultivation due to Pb, Cd and Zn contamination. We assessed soil properties, biomass yield, metal concentrations, and the photosynthetic performance of each species. Physico-chemical and elemental analyses were performed on soil samples before plantation establishment (2014) and after three years of cultivation (2016), when leaf area index, plant height, yield and heavy metal content of biomass were also determined. Physiological measurements (gas exchange, pigment content, chlorophyll a fluorescence) were recorded monthly between June and September on mature plants in 2016. Cultivation of investigated plants resulted in increased pH, nitrogen, and organic matter (OM) content in soil, although OM increase (13%) was significant only for S. pectinata plots. During the most productive months, maximal quantum yield values of primary photochemistry (Fv/Fm) and gas exchange parameter values reflected literature data of those plants grown on uncontaminated sites. Biomass yields of M. x giganteus (15.0 ± 0.4 t d.m. ha−1) and S. pectinata (12.6 ± 1.2 t d.m. ha−1) were also equivalent to data published from uncontaminated land. P. virgatum performed poorly (4.1 ± 0.4 t d.m. ha−1), probably due to unfavourable climatic conditions, although metal uptake in this species was the highest (3.6 times that of M. x giganteus for Pb). Yield and physiological measurements indicated that M. x giganteus and S. pectinata were unaffected by the levels of contamination and therefore offer alternatives for areas where food production is prohibited. The broad cultivatable latitudinal range of these species suggests these results are widely relevant for development of the bioeconomy. We recommend multi-location trials under diverse contaminant and environmental regimes to determine the full potential of these species.
Mostrar más [+] Menos [-]Microplastics contamination in different trophic state lakes along the middle and lower reaches of Yangtze River Basin Texto completo
2019
Li, Lu | Geng, Shixiong | Wu, Chenxi | Kang, Song | Sun, Fuhong | Visvanathan, C. | Xie, Fazhi | Wang, Qilin
Microplastics can enter freshwater lakes through many sources. They can act as carriers to adsorb bacteria, virus, or pollutants (e.g., heavy metal and toxic organic compounds) that threaten human health through food chain. Microplastics can exist in surface water and sediments in freshwater lakes after they enter the lakes through discharge points. Wastewater discharge is the main cause of lake eutrophication and is the main emission source of microplastics. The correlation between lake trophic state and microplastic abundance has been rarely reported. This study investigated the microplastic contamination in surface water and sediments of 18 lakes along the middle and lower reaches of the Yangtze River Basin in the period of August–September 2018. The correlation between lake trophic state and microplastic abundance in surface water and sediments was investigated and discussed. The microplastic abundance in surface water was approximately two orders of magnitude lower than that in sediments in all 18 lakes. Hong Lake had the highest microplastic abundance in surface water sample, and Nantaizi Lake had the highest microplastic abundance in sediment sample. The dominant microplastic shape was fiber of 93.81% in surface water sample and 94.77% in sediment sample. Blue-colored microplastics were dominant in nearly all lakes in surface water sample (around 40%–60%) and sediment sample (around 60%–80%), followed by purple- and green-colored ones. The microplastics size <1 mm was dominant in surface water sample (around 40%–60%) and sediment sample (around 50%–80%). The dominant material was polypropylene in surface water sample (around 60%–80%) and sediment sample (around 40%–60%).
Mostrar más [+] Menos [-]