Refinar búsqueda
Resultados 191-200 de 502
Water Treatment: Evaluation of Maleic Acid-Acrylamide Copolymer Inhibitor Efficiency on Calcite Scale by Response Surface Methodology
2024
Senthilmurugan, Balasubramanian | Radhakrishnan, Jayaprakash Sandhala
Mineral scales of calcite are common in the oil field and pose a serious integrity problem in the wellbore, flow lines, and equipment. It is also a challenge faced by industries such as refineries and power plants. Scale deposition is a complex process depending on various factors such as concentration of scaling species, temperature, pH, and flow rates. Deterministic models are used to predict the scale formation from the level of supersaturation of the scaling species in the water at the operating conditions. However, due to the complexity of the interaction of variables affecting the scaling and inhibition by chemicals, it is suitable to be represented by statistical models. This work focused on applying statistical analysis techniques such as response surface methodology to understand the effect of different operating parameters on the inhibition efficiency of maleic acid-acrylamide copolymer on CaCO3 scales. The copolymer was synthesized, and its inhibition efficiency on the calcite scale was tested using static jar tests at different pH, temperature, and inhibitor concentrations. The effect of the critical parameters on the inhibition efficiency was analyzed using the statistical technique of Response Surface Methodology (RSM). The design of experiments (DoE) was created using a Box–Behnken design with three levels for each factor. The linear and the quadratic effects of the factors were studied and the interaction effects were analyzed using analyses of variance (ANOVA) and RSM. A desirability function was used to optimize the performance for the combination of the variables. The analysis showed that the linear effect of the parameters had the highest impact on the inhibition efficiency. Significant interaction effects were also identified between the operating variables. A transfer function was used to model the experimental data of inhibitor performance.
Mostrar más [+] Menos [-]Effect of Fly Ash in Pyrolysis of HDPE, LDPE and PP Plastic Waste
2024
Sonawane, Y. B. | Shindikar, M. R. | Khaladkar, M. Y.
Fly ash is generally obtained as a by-product from the combustion of coal and other waste materials. It is used for making bricks, but it has few limitations. The fly ash consists of Silica, Alumina, and other metal oxide components in minor quantities. Fly ash particles are observed in the range of nanometers to micrometers and can act as a catalyst in various reactions. The use of low-cost catalysts in the pyrolysis of thermoplastic waste would achieve a high percentage of low molecular weight fractions in liquid form which increases its applicability in commercial sectors. Hence, there is a need to enhance these fractions to achieve a sustainable approach in the catalytic pyrolysis process. fly ash, being a side product, is very cheap, so its effect on the plastic waste pyrolysis process has been studied. In the present research paper, Physical & chemical characterization of fly ash has been carried out. As fly ash consists of different metal oxides in proportion, its applicability in the process of pyrolysis of HDPE, LDPE, and PP waste has been studied. The different weight percent of fly ash (i.e., 5, 10, 15, 20) have been tried in all pyrolysis experiments. It has been observed that 5 wt % fly ash is effective for enhancing the yield of liquid fuel as compared to that without a catalyst. Liquid fuel obtained from catalytic pyrolysis of HDPE, LDPE, and PP waste with Fly ash consists of a high percent of low molecular weight fractions as compared to that of liquid fuel without catalyst, which has been concluded by calorific values & GC-MS result.
Mostrar más [+] Menos [-]Exploring the Adsorption Efficiency of Local Apricot Seed Shell as a Sustainable Sorbent for Nitrate Ion
2024
Ishaq, Mohd | Chhipa, R. C. | Sharma, Anupama | Ali, Gh. | Hussain, Riyaz-ul
Locally available apricot seed shell as agro-waste was used for the preparation of adsorbents. The biochar was prepared at 370°C via pyrolysis and 80 mesh particle sizes were modified by 1N HCl. Nitrate adsorption and effect of co-ions from aqueous solution were studied under batch model using apricot seed shell powder (ASSP), apricot seed shell biochar (ASSB), and activated apricot seed shell biochar (AASSB). FTIR and pHPZC measurements were used to characterize the adsorbents. Based on the experimental findings, the optimum conditions follow pH 2, 0.3g dosage, initial concentration of 50 mg.L-1, and contact time of 90 min. The three forms of adsorbent exhibited good adsorption for nitrate. However, the maximum percentage removal of nitrate ions from the aqueous solution followed the order AASSB>ASSB>ASSP. The adsorption kinetic of nitrate ion was best fitted by pseudo 2nd order, and the parameters of adsorption isotherms elucidated favorable and improved sorption. This agro-waste could be used to develop sustainable adsorbents in water and wastewater treatment methods and has great potential to replace commercially available sorbents.
Mostrar más [+] Menos [-]Alternate Chemical Compounds as a Condensation Nucleus in Cloud Seeding
2024
Azeez, Hasan M. | Ibraheem, Nagham T. | Hussain, Hazim H.
Cloud seeding involves boosting precipitation by releasing substances into the air that act as cloud condensation or ice nuclei. These substances encourage the development of clouds and precipitation. It’s like giving Mother Nature a gentle push to assist with rainfall in specific areas. The current work aimed to suggest Al2O3 as an alternate compound in cloud seeding rather than silver iodide. In this research, a unique approach is used to identify condensation nuclei, which play a crucial role in cloud formation and droplet growth. Various samples and four sources were included in the current study; refrigerated helfa powder, Himalayan salt, generator powder, and pollen, were analyzed using different physicochemical instruments. The proportions of chemical compounds in the samples show that there is 1.392% of Al2O3 in Refrigerated helfa which is the highest than in the other 3 sources, while the proportions of elements in the samples indicate that refrigerated helfa contains the lowest toxic compound, and although Al2O3 is insoluble in water, it is hygroscopic and can absorb 6.4% of humidity within 24 hours. As for the surface tension, refrigerated helfa shows lower density and surface tension than the other three sources with values of 0.9480 and 47.89 respectively. Al2O3 shows high humid absorptivity and refrigerated helfa can be used as a main source for Al2O3 which has a low effect on biota and is recommended for use in cloud seeding. However further work is recommended to be carried out in using Al2O3 as an alternative compound to silver iodide in cloud seeding.
Mostrar más [+] Menos [-]Sewage Treatment by Kolkata’s Natural Wetland System
2024
Khan, I. | Gupta, D. Das | Gupta, A.
The metropolis of Kolkata stands uniquely positioned to implement a natural sewage treatment paradigm through the utilization of waste stabilization ponds, specifically within the East Kolkata Wetlands (EKW). These shallow oxidation ponds harness solar irradiation and algae bacteria symbiotic processes to effectively treat incoming sewage. Concurrently, nutrient-rich effluents are assimilated through fish production, converting available nutrients into protein—a hallmark of nature-based treatment. A portion of raw sewage is used to cultivate a chunk of vegetables before treatment in fish ponds, and the reclaimed water after treatment is used for vegetable and paddy cultivation downstream. This investigation explains the delineation of a sewage flow system to EKW, a Ramsar-designated site. Substantively, it offers quantitative insights into the sewage volumes and quality undergoing treatment. The sewage flow is higher in the winter months (909.07 MLD) compared to the summer months (709.34 MLD). In general, the sewage from the Kolkata city flowing to the EKW is moderately polluted. Extensive scrutiny of sewage from pond inlets and outlets serves as a quantitative metric for evaluating treatment efficacy. EKW efficiently treats the sewage, demonstrating 59.1% Biological Oxygen Demand (BOD) removal and a 99.28% reduction in fecal coliform. The natural treatment system excels in removing ammoniacal nitrogen (80.38%) and phosphate (90%). The treated water’s quality along the EKW boundary, culminating at the Kulti Gong River discharge point, was systematically assessed. Analytical findings indicate that all measured concentrations in the treated water adhere to prescribed inland surface water discharge standards prescribed by the Central Pollution Control Board, India, barring a marginal elevation in BOD during winter. Evidently, the EKW system adeptly manages substantial sewage volumes, fostering efficient treatment while concurrently facilitating resource recovery through fish production, yielding economic dividends. Despite its substantial land footprint, preserving this inherently sustainable wastewater management paradigm is imperative.
Mostrar más [+] Menos [-]The Effect of Senegal River Irrigation Water Quality on Soil Salinization: A Study of the Main Canal of the M’Pourie Plain in Mauritania
2024
Med Fadel, Mewgef El Ezza Dite Hanane Djieh Cheikh | Dick, B. A. | S’Id, E. C. | Ammar, M. B. | Ould Sidi, Y. M. | Mohamed, L. S. | Yehdhih, Mohamed Lemine | Fekhaoui, Mohamed
In this study, the Senegal River, being the main source of water, plays a crucial role in the area’s agricultural development. Irrigation on the M’Pourie plain using water from the Senegal River is carried out without any prior sanitation control. An evaluation of the quality of irrigation water and its impact on soil salinization in different agricultural plots soil salinity is crucial for the effective utilization of traditional irrigation water over extended periods. Comprehensive physico-chemical analyses were conducted across nine locations on the M’Pourie plain in Rosso during the dynamic seasons of 2021-2023. Nevertheless, a relatively small number of studies have employed soil salinity indexing methods to examine the consequences of river irrigation on soil salinity. The analysis and interpretation of the results obtained were based both on classic methods (average and correlations) and more advanced techniques such as principal component analysis (PCA) and the Piper diagram which allow characterization and a spatial typology of water. Analysis of the Piper diagram highlights the distinction between two groups of water, weakly and moderately mineralized, ranging from 52.22 μS.cm-1 in the dry season to 72.22 μS.cm-1 in the rainy season, presenting a sodium-potassium bicarbonate facies The variability of irrigation water supplies, proves to be important in the functioning of an agro-systems. Two modes of operation have become individualized: the dry phase mode, characterized by very strong mineralization of the water linked to a significant load of dissolved elements, and the wet phase mode, whose water quality is poorly mineralized but shows the impact that its irrigation water can represent in the loading of organic and mineral pollution and the need for strict control of these waters upstream before their agricultural use. The results of this study show the absence of risks of soil salinization in relation to the chemical nature of irrigation water and the impact of agriculture on the M’Pourie plain.
Mostrar más [+] Menos [-]Accumulation and Translocation of Heavy Metals in Hibiscus cannabinus Grown in Tannery Sludge Amended Soil
2024
., Anita | Kulsoom, Mahiya | Yadav, Aneet Kumar | Kumar, Monu | Raw, Kamla Pat | Prasad, Satguru | Kumar, Narendra
Digested sludge wasted by tanneries is rich in nutrients and trace elements however, the presence of toxic metals restricts their use in agriculture. The present study explores the possible application of tannery sludge amendment for the cultivation of an energy crop, Hibiscus cannabinus. The toxicity of various sludge amendments (25, 50, 75, and 100%, w/w) was examined during early seedling growth, followed by metal accumulation potential by performing pot experiments. Chemical characterization revealed the presence of Cr (709.6), Cu (366.43), Ni (74.6), Cd (132.71), Pb (454.8) μg.g-1 in tannery sludge beside N (2.1%), P 3.8 & K 316.96 (kg.hec-1.) respectively. Germination of H. cannabinus exposed to sludge extracts ranged between 80 to 95%; Relative seed germination, 81.33 to 84.43%. Relative root growth, 0.9 to 1.16 cm; and germination index, 95 to 110%. It was found that sludge extracts have not caused adverse effects on seed germination and early seedling growth. Heavy metal accumulation was observed as follows: Ni (3.37, 2.38, 1.46 & 0.90 mg.kg-1) > Pb (10.59, 10.15, 5.26, & 2.84 mg.kg-1) > Cu (2.34, 2.24, 0.97 & 0.24 mg.kg-1) > Cd (2.31, 1.19, 1.33 & 1.12 mg.kg-1) > Cr (1458, 1136.12, 601.73 & 211.6 mg.kg-1) in 100, 75, 50, & 25% sludge amended soil, respectively. The bio-concentration pattern of metals was found to be in the order of root > leaf > stem. The findings of the present study give direction for the eco-friendly and cost-effective management of tannery sludge. Further, H. cannabinus can be used for the restoration of metal-contaminated agricultural land, however, results need to be corroborated with field trials.
Mostrar más [+] Menos [-]Beachgoers’ Knowledge, Perceptions, and Willingness to Pay for Sustainable Waste Management in Kuakata Sea Beach, Bangladesh
2024
Amin, Md. Al | Ahmed, Md. Tanvir
With rising public awareness and concern for environmental sustainability, calls for nature-friendly marine and beach litter management have grown louder. This study, employing logistic and ordinary least square regressions, explores tourists’ knowledge, perceptions, and willingness to pay (WTP) using data (n = 400) collected from Kuakata Sea Beach, Bangladesh. Results showed that approximately 99% of the respondents recognize the urgency for further development in the waste management system, while 53% are aware of it. Gender is identified as a statistically significant factor impacting beachgoers’ WTP – males are willing to pay more. Besides, visitors with higher incomes demonstrate the willingness to pay more. Additionally, 37% of the respondents think that appropriate information dissemination and raising awareness are critical to confronting this problem, and another 38% recommended proper placement of dustbins on the beach. These outcomes can be very useful in designing any relevant policies for promoting sustainable beach waste management.
Mostrar más [+] Menos [-]Alleviation of Different Climatic Conditions by Foliar Application of Salicylic Acid and Sodium Nitroprusside and Their Interactive Effects on Pigments and Sugar Content of Maize Under Different Sowing Dates
2024
Devi, Priyanka | Kumar, Prasann
The agricultural sector is seriously impacted by climate change, leading to potential risks to food security. In terms of global food production, maize ranks third. As a result, crop production and food security depend critically on assessing the effects of climate change and developing measures to adapt maize. Regarding adaptability, changing planting dates and using different agrochemicals are more effective than other management. Crop models are part of a global decision support system to help farmers maximize yields despite unpredictable weather patterns. To mitigate yield loss and protect the ecosystem, it is essential to use efficient maize-sowing practices in the field. This experiment was carried out to identify the most favorable sowing dates that maximize yield while ensuring the crop’s productivity and the integrity of the surrounding ecosystem remain intact. The main aim of this experiment was to mitigate the different climatic conditions by exogenous application of salicylic acid (SA) and sodium nitroprusside (SNP) on pigments and sugar content in maize under different sowing dates. A field experiment was carried out in the School of Agriculture, Lovely Professional University, Punjab, India, during the spring season of 2022. The experiment dealt with various maize crops, PMH-10, sourced from the Punjab Agricultural University (PAU), Punjab. The experiment was conducted in an open-air environment. The experimental setup was laid out in a split-plot design. The results stated that foliar application of salicylic acid and sodium nitroprusside successfully influenced high-temperature tolerance and low temperature at the reproductive phase and initial vegetative stages with other growing climatic conditions of maize in early and late sowings when controlled by increasing the chlorophyll index, carotenoids content, and sugar content of maize.
Mostrar más [+] Menos [-]Heavy Metal Concentration in Fish Species Clarias gariepinus (Catfish) and Oreochromis niloticus (Nile Tilapia) from Anambra River, Nigeria
2024
Ogbuene, E. B. | Oroke, A. M. | Eze, C. T. | Etuk, E. | Aloh, O. G. | Achoru, F. E. | Ogbuka, J. C. | Okolo, O. J. | Ozorme, A. V. | Ibekwe, C. J. | Eze, C. A. | Akatakpo, S.
Studies have emphasized that the presence of heavy metals in freshwater fish represents a global public health issue. Nigeria, being a developing nation with less emphasis on the quality of seafood consumed by the residents, ranks this study very vital. The policy implication of this study is the advancement of a healthy population in contemporary Nigeria. Hence, this study assessed heavy metal concentration in two fish species, Clarias gariepinus (Catfish) and Oreochromis niloticus (Nile Tilapia), in the Anambra River. The sample included twenty fishes, of which eighteen were collected from the three sampling locations (the fish ports of Anambra River), namely Otu-nsugbe, Otuocha, and Ikemivite) while two control samples were collected from a pond about 200 m away from the river. The levels of heavy metals were determined using Varian AA 240 atomic absorption spectrophotometer (AAS). The results showed that the concentrations of heavy metals (cadmium and arsenic) in the sampled fishes from Anambra River exceeded the joint World Health Organization and Food and Agriculture Organization (FAO/WHO) standard for fish and fish product consumption, while the concentration of chromium, mercury, and lead are within the permissible limit. The study also showed the distribution of the heavy metals in the fish organ varies among fish species. Heavy metals occur higher in Clarias garepinus than in Oreochromis niloticus, while tissue preference for heavy metal accumulation is in the order of gill > liver > muscle. It was recorded from this study that the heavy metal concentration in the fish from the pond is generally higher than the fish from the river for some metals. The high level of heavy metals in the sampled fish was attributed to heavy metals contamination of the river as a result of various anthropogenic activities such as mining, burning of fossil fuel and emission from the exhaust of boats/vehicles, overuse of fertilizers and pesticides, discharge of effluent, sewage, and hospital waste. This study concluded that long-term consumption of fish from the river may pose health risks to the consumers due to the possible bioaccumulation of heavy metals, especially cadmium and arsenic. It was recommended that continuous monitoring of heavy metal levels in the fish and water, public awareness, and appropriate legislative provisions should be put in place to ensure that harvested fish and fish products may be safe for human consumption.
Mostrar más [+] Menos [-]