Refinar búsqueda
Resultados 1911-1920 de 4,042
Investigating PPCP Removal from Wastewater by Powdered Activated Carbon/Ultrafiltration Texto completo
2016
Rodriguez, Elena | Campinas, Margarida | Acero, Juan Luis | Rosa, Maria João
Powdered activated carbon/ultrafiltration (PAC/UF) hybrid process was investigated for removing from wastewater five pharmaceutical and personal care products (PPCPs): 1-H-benzotriazole, DEET, chlorophene, 3-methylindole and nortriptyline-HCl. Adsorption, UF and PAC/UF experiments were performed, focusing on PPCP adsorption as a function of PPCP characteristics and organic matter (EfOM) competition. Two water matrices and two fine-particle PACs were studied, differing on EfOM nature and concentration and on PAC microporosity. Neutral PPCP uptake by the positively charged, meso- and microporous PACs followed PPCP hydrophobicity expressed by log Kₒw. The uptake of the positively charged nortriptyline exceeded the expected from log D due to its high aromaticity and the background ions, which partially shielded PAC-nortriptyline electrostatic repulsions. Adsorption capacity depended on PPCP hydrophobicity whereas the kinetics further depended on PPCP charge. Hydrophobic EfOM was preferentially adsorbed and a stronger competitor, particularly for PPCPs with logKₒw < 2.6. The highly microporous PAC better adsorbed these PPCPs and the hydrophobic EfOM, and it attenuated the EfOM competition. For all waters, PAC had no effect on UF-flux, and it significantly improved PPCP and EfOM removal by PAC/UF over standalone PAC and UF. For all conditions and microcontaminants, PPCP uptake exhibited a sigmoid curve with logKₒw, with a turning point at 2.2–2.6. In real applications, meso- and highly microporous PACs are recommended, and the dose should target the PPCPs with log Kₒw < 2.6.
Mostrar más [+] Menos [-]Calibration and Validation of a Two-Step Kinetic Mathematical Model for Predicting Cu Extraction Efficiency in an EDDS-Enhanced Soil Washing Texto completo
2016
Ferraro, Alberto | Fabbricino, Massimiliano | van Hullebusch, Eric D. | Esposito, Giovanni
The kinetic trend for Cu extraction from contaminated soil through ethylenediamine-N,N′-disuccinic acid (EDDS)-enhanced soil washing is investigated. Long-term tests are conducted over 96 h at five different values of EDDS-Cu (M) molar ratio (mol/mol) and five different values of liquid-to-soil (L/S) ratio (v/w). The overall Cu extraction efficiency at different M ratios ranges from ≃47 to ≃60 % as the ratio increases from stoichiometric values to EDDS excess (M = 50). An increase in the L/S ratio generally leads to the Cu extraction efficiency decrease, from ≃60 % (L/S = 5) to ≃49 % (L/S = 45). The highest decrease of Cu extraction yield is observed while increasing the L/S ratio from 5 to 15, with negligible differences occurring as the L/S ratio increases further. The collected data show a two-step kinetic tendency during the extraction process, first characterized by a fast extraction kinetic which is followed by a slow extraction step. Two sets of experimental data are used for calibration and validation of a two-step mathematical model used to simulate Cu mobilization efficiency as a function of treatment time and M ratio. The proposed model is a useful tool for Cu extraction efficiency prediction and can be applied to improve the decision-making process regarding the EDDS-enhanced soil washing approach.
Mostrar más [+] Menos [-]Does Increased Road Dust Due to Energy Development Impact Wetlands in the Bakken Region? Texto completo
2016
Creuzer, Jessica | Hargiss, Christina L. M. | Norland, Jack E. | DeSutter, Thomas | Casey, Francis X. | DeKeyser, Edward S. | Ell, Mike
The Bakken region of western North Dakota and Montana from January 2012 to December 2013 saw an increase of 3368 oil wells, causing a major increase in road dust emissions. A portion of the energy extraction in the Bakken occurs in the wetland rich Prairie Pothole Region, and there is little information on gravel road dust emissions or the ecological impacts. The objectives of this study were to (1) estimate surface loading of gravel road dust during different times of year and at different distances from the road, (2) evaluate dust loading effects on surface water quality, and (3) evaluate the impact of dust deposition on wetland soils. Ten wetlands were tested in the energy impacted area and ten in an adjacent area without energy development. There was a 355 % increase in dust loading 10 m from the road in the energy impacted area compared to an area without energy development; meanwhile, there was only a 46 % increase in dust loading 40 m from the road. This loading resulted in an annual deposition of 647 g/m² of gravel road dust close to the road. However, the effect of dust loading on the water quality and soils of wetlands was minimal when compared to wetlands not impacted by increased gravel road dust. The finding of minimal effect on wetland resources from increased road dust fills a knowledge gap in the Bakken on how energy development alters the environment.
Mostrar más [+] Menos [-]Remediation of oil-contaminated sand with self-collapsing air microbubbles Texto completo
2016
Agarwal, Ashutosh | Zhou, Yufeng | Liu, Yu
In this study, a novel chemical-free approach for cleaning oil-contaminated sand with self-collapsing air microbubbles (MBs) with diameter less than 50 μm was developed without the use of chemicals, such as surfactants and alkalis. Diesel and rotary-vane pump oil-contaminated fine and medium sands were treated with MBs to study the effect of oil viscosity and sand grain size on oil removal with MBs. About 95 % of diesel removal was achieved for 24 h old 10 % (w/w) diesel-contaminated medium sand in contrast to only 70 % removal from fine sand after 40-min treatment with MBs. While rotary-vane pump oil removal exceeds that of diesel after 40-min treatment with MBs, combination of mechanical stirring with MBs significantly enhanced the oil removal rate, whereby 95 % diesel removal was achieved from fine sand in 30 min in contrast to only 52 % diesel removal with MBs alone. A possible MBs cleaning mechanism for oil-contaminated sand was also proposed. This study provides experimental evidence for the applicability of self-collapsing MBs as a novel chemical-free approach for cleaning oil-contaminated sand.
Mostrar más [+] Menos [-]Spatial Distribution of Oil and Biostimulation Through the Rhizosphere of Leersia hexandra in Degraded Soil Texto completo
2016
Rodríguez-Rodríguez, N. | Rivera-Cruz, M. C. | Trujillo-Narcía, A. | Almaráz-Suárez, J. J. | Salgado-García, S.
The aim of this study was to evaluate the spatial distribution of total petroleum hydrocarbons (TPH) in rhizoplane and non-rhizosphere of Leersia hexandra, known as Japanese grass, the effect of oil on the aerial biomass of L. hexandra, the population of plant growth-regulating bacteria, and microbial respiration in rhizosphere and non-rhizospheric soil. Samples of rhizosphere and soil were collected at 14 points across a surface of 2.3 ha, layer 1 (0–15-cm depth), layer 2 (15–30 cm), and layer 3 (30–70 cm), to measure TPH (mg kg⁻¹). The spatial distribution of TPH defined four study zones (Z): Z1: 1393, Z2: 3455, Z3: 5574, and Z4: 7544. TPH were higher in underlying layers in the four zones. Zone 2 produced the largest amount of aerial biomass; oil induced hormesis in the grass, but inhibited it at doses ≥5574. For the rhizosphere of L. hexandra, it was cut with a sterilized knife, stimulated the population of N-fixing and phosphorus solubilizing, heterotrophic bacteria, as well as microbial respiration (day 1, 14, 21, 42, and 63 after incubation) in the four zones. The population of the three groups of bacteria was more stimulated by weathered oil in rhizosphere soil, compared to non-rhizosphere soil and with control treatment, suggesting that the rhizosphere system of L. hexandra has the potential to bioestimulate beneficial microbial activity in unpolluted and polluted areas compared to non-rhizosphere soil. We recommend the use of L. hexandra to recover soils degraded by weathered oil in farms located in the Mexican humid tropics.
Mostrar más [+] Menos [-]Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards Texto completo
2016
Lazarov, Borislav | Swinnen, Rudi | Poelmans, David | Spruyt, Maarten | Goelen, Eddy | Covaci, Adrian | Stranger, Marianne
The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m⁻² h⁻¹ in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m⁻² h⁻¹. This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m³ μg⁻¹. In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle–gas coefficient for this test was 0.062 ± 0.037 m³ μg⁻¹.
Mostrar más [+] Menos [-]Beneficial role of ascorbic and folic acids antioxidants against thyroxin-induced testicular dysfunction in hyperthyroid rats Texto completo
2016
Beltagy, Doha M. | Mohamed, Tarek M | El Said, Ahmed S. | Tousson, Ehab
Thyroid hormones play a fundamental role in the regulation of metabolism of almost all mammalian tissue including the reproductive system. Hyperthyroidism in early life may cause delayed sexual maturation, although physical development is normal and skeletal growth may be accelerated. Hyperthyroidism after puberty influences reproductive functions and increases testosterone level. The aim of this work is to study the effect of induced hyperthyroidism by L-thyroxine sodium administration on the testis of rats and to evaluate the ameliorating role of different antioxidants as ascorbic acid and folic acid on the hyperthyroid state via the assessment of different biochemical markers, histopathological and immunochemical sections. DNA analysis of the D1 deiodinase was performed to determine genetic mutation due to hyperthyroidism. The results showed partially disrupted in the measured biochemical parameters and spermatogenesis in hyperthyroid rats. Post-administration of both folic and ascorbic acids together in hyperthyroid rats showed the best ameliorating effects on the thyroid hormones, testosterone, testicular GGT and ALP, and all oxidative stress markers. There is no genetic mutations that occurred in D1 deiodinase due to hyperthyroidism. These findings were indicated by the proliferating cell nuclear antigen (PCNA) studies of testes.
Mostrar más [+] Menos [-]Experimental Investigation and Numerical Modeling of Enhanced DNAPL Solubilization in Saturated Porous Media Texto completo
2016
Aydin-Sarikurt, Derya | Dokou, Zoi | Copty, NadimK. | Karatzas, GeorgeP.
The accidental release of organic contaminants in the form of non-aqueous phase liquids (NAPLs) into the subsurface is a widespread and challenging environmental problem. Successful remediation of sites contaminated with NAPLs is essential for the protection of human health and the environment. One technology that has received significant attention is the injection of chemical additives (such as cosolvents) upgradient of the NAPL zone for the enhanced dissolution and mobilization of the NAPL mass. A key process influencing the effectiveness of NAPL mass recovery is the interphase mass transfer which is the transfer of components across the interface separating the different phases. In this work, we examine the impact of cosolvent content, flushing solution velocity, and injection pattern (continuous versus intermittent) on the interphase mass transfer rate. A series of flushing experiments were conducted using an intermediate-scale tank which allows for the impact of density variations on DNAPL mobility. The target DNAPL selected in this study was trichloroethylene while the flushing solutions consisted of ethanol–water mixtures with ethanol contents ranging from 0 to 50% by volume. The experimental results were also modeled using the UTCHEM multiphase flow simulator that was modified to model cosolvent flushing. Results show that the observed interphase mass transfer coefficient, expressed as a modified Sherwood number, was much lower than predicted based on published correlations developed under idealized conditions. Moreover, interphase mass transfer rate decreased with time, indicating that a single interphase mass transfer coefficient cannot accurately model the entire flushing solution. The data also suggest that the interphase mass transfer coefficient is dependent on cosolvent content.
Mostrar más [+] Menos [-]Impact of Humic Acid on the Photo-Induced Toxicity of Triclosan Texto completo
2016
Chen, Lei | Wang, Zheng | Cao, Shiwei | Gu, Xin | Gong, Shurui | Shen, Zihao
Triclosan is an antimicrobial agent which is frequently found in the aquatic environment. Photolysis is an important transformation pathway for triclosan in surface water. Though a lot of studies have been conducted on the toxicity of triclosan, few of them focused on the ecological risk of the mixture after sunlight irradiation. The aim of the present study was to investigate the potential toxicity of triclosan under light irradiation and the influence of the coexisting humic acid by bioassay. Photo-induced acute toxicity and genetic toxicity were observed in the triclosan solutions after 24 h of light irradiation. The addition of humic acid at the concentration of 1 and 5 mg/L both resulted in a significant decrease (p < 0.05) in the photo-induced toxicity of triclosan. It is suggested that the photo-transformation process and the influence of humic acid should be considered for the ecological risk assessment of triclosan in surface water since humic acid is ubiquitous in natural water.
Mostrar más [+] Menos [-]Laboratory Evaluation of Metal Elements Urease Inhibitor and DMPP Nitrification Inhibitor on Nitrogenous Gas Losses in Selected Rice Soils Texto completo
2016
Khariri, Rosmarina bt Ahmad | Y. M. Khanif, | Musa, Mohamed Hanafi | H. Aminuddin,
Urea is considered as the most widely used nitrogen (N) fertilizer. Unfortunately, its application is associated with losses such as emissions of ammonia (NH₃) and nitrous oxide (N₂O) in a gas form. In addition to the economic loss, such N losses may threaten atmospheric quality. Application of both urease and nitrification inhibitors is advocated as an approach to mitigate these gaseous losses. Thus, laboratory studies were carried out to evaluate the effects of urease inhibitor-coated urea, nitrification inhibitor-coated urea, and other modified urea fertilizers on NH₃ volatilization and N₂O gas emissions in selected anaerobic rice soils. Copper (Cu) and Zinc (Zn) were selected as urease inhibitors and DMPP (3,4-dimethylpyrazole phosphate) as nitrification inhibitor. Nitrogen fertilizer treatments used were urea, Cu-coated urea (CuU), Zn-coated urea (ZnU), Cu + Zn-coated urea (CuZn), DMPP-coated urea (DMPPU), DMPP + Cu + Zn-coated urea (DMPPCuZn), OneBaja, sulfur-coated urea (SU), and dolomite-coated urea (DU). Results demonstrated that CuU, ZnU, DMPPCuZn, SU, and OneBaja were effective in reducing NH₃ volatilization by 12.12–37.48 % compared to urea, while DMPPU had no effect on NH₃ volatilization. Meanwhile, sulfur-coated urea (SU), CuU, ZnU, CuZn, OneBaja, DMPPU, and DMPPCuZn reduced N₂O emission over urea by 14.86, 17.57, 21.62, 29.73, 29.73, 33.78, and 48.64 %, respectively. These results suggest that using Cu, Zn, or combinations of DMPP, Cu, and Zn is recommended as an alternative to mitigate both NH₃ volatilization and N₂O emission, in addition to providing positive impact to environment.
Mostrar más [+] Menos [-]