Refinar búsqueda
Resultados 1961-1970 de 3,208
Distribution and chemical forms of copper in the root cells of castor seedlings and their tolerance to copper phytotoxicity in hydroponic culture Texto completo
2015
Kang, Wei | Bao, Jianguo | Zheng, Jin | Hu, Hongqin | Du, Jiangkun
The subcellular localization and chemical forms of copper in castor (Ricinus communis L.) seedlings grown in hydroponic nutrient solution were identified by chemical extraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The wild castor seeds were harvested from an abandoned copper mine in Tonglu Mountain, Daye City of Hubei Province, China. The results revealed that (1) the seedlings grew naturally in MS liquid medium with 40.00 mg kg⁻¹CuSO₄, in which the seedling growth rate and biomass index were 0.14 and 1.23, respectively, which were the highest values among all the treatments. The copper content in castor seedlings increased along with elevated CuSO₄concentration in the medium, reaching a maximum value of 16 570.12 mg kg⁻¹(DW) when exposed to 60.00 mg L⁻¹CuSO₄, where 91.31 % of the copper was accumulated in roots. (2) The copper existed in various chemical forms in the roots of the castor seedlings. Copper of 67.66 % was extracted from the components of cell walls, such as exchangeable acidic polar compounds, cellulose and lignin, protein and pectin, and less concentrated in cell cytoplasm and nuclei. (3) Furthermore, the root cell walls were thickened when the castor seedlings exposed to CuSO₄, with a large amount of high-density electron bodies, attached to the thickened cell walls. In the cell walls, most copper was bound to the carboxyl (−COOH) and hydroxyl (−OH) groups of acidic polar compounds, cellulose, hemicellulose, and polysaccharides. The conclusion showed that castor exhibited a strong tolerance to copper, the copper were accumulated mainly in the root cell, the root cell walls of castor were the major location of patience and detoxification in copper stress.
Mostrar más [+] Menos [-]A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum Texto completo
2015
Schlunk, Ines | Krause, Katrin | Wirth, Sophia | Kothe, Erika
Fungi exposed to toxic substances including heavy metals, xenobiotics, or secondary metabolites formed by co-occurring plants or other microorganisms require a detoxification system provided by exporters of several classes of transmembrane proteins. In case of mycorrhiza, plant metabolites need to be exported at the plant interface, while the extraradical hyphae may prevent heavy metal uptake, thus acting as a biofilter to the host plant at high environmental concentrations. One major family of such transporter proteins is the multidrug and toxic compound extrusion (MATE) class, a member of which, Mte1, was studied in the ectomycorrhizal fungus Tricholoma vaccinum. Phylogenetic analyses placed the protein in a subgroup of basidiomycete MATE sequences. The gene mte1 was found to be induced during symbiotic interaction. It mediated detoxification of xenobiotics and metal ions such as Cu, Li, Al, and Ni, as well as secondary plant metabolites if heterologously expressed in Saccharomyces cerevisiae.
Mostrar más [+] Menos [-]UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties Texto completo
2015
Wang, Ruihua | MoYung, KC | Zhang, MH | Poon, Karen
Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.
Mostrar más [+] Menos [-]Water and nonpoint source pollution estimation in the watershed with limited data availability based on hydrological simulation and regression model Texto completo
2015
Huiliang, Wang | Zening, Wu | Caihong, Hu | Xinzhong, Du
Nonpoint source (NPS) pollution is considered as the main reason for water quality deterioration; thus, to quantify the NPS loads reliably is the key to implement watershed management practices. In this study, water quality and NPS loads from a watershed with limited data availability were studied in a mountainous area in China. Instantaneous water discharge was measured through the velocity-area method, and samples were taken for water quality analysis in both flood and nonflood days in 2010. The streamflow simulated by Hydrological Simulation Program-Fortran (HSPF) from 1995 to 2013 and a regression model were used to estimate total annual loads of various water quality parameters. The concentrations of total phosphorus (TP) and total nitrogen (TN) were much higher during the flood seasons, but the concentrations of ammonia nitrogen (NH₃-N) and nitrate nitrogen (NO₃-N) were lower during the flood seasons. Nevertheless, only TP concentration was positively correlated with the flow rate. The fluctuation of annual load from this watershed was significant. Statistical results indicated the significant contribution of pollutant fluxes during flood seasons to annual fluxes. The loads of TP, TN, NH₃-N, and NO₃-N in the flood seasons were accounted for 58–85, 60–82, 63–88, 64–81 % of the total annual loads, respectively. This study presented a new method for estimation of the water and NPS loads in the watershed with limited data availability, which simplified data collection to watershed model and overcame the scale problem of field experiment method.
Mostrar más [+] Menos [-]Impairment of benthic diatom adhesion and photosynthetic activity by allelopathic compounds from a green alga: involvement of free fatty acids? Texto completo
2015
Allen, Joey L. | Ten-Hage, Loïc | Leflaive, Joséphine
The role of chemical interactions in shaping microbial communities has raised increasing interest over the last decade. Many benthic microorganisms are known to develop chemical strategies to overcome competitors, but the real importance of chemical interactions within freshwater biofilm remains unknown. This study focused on the biological and chemical mechanisms of an interaction involving two benthic microorganisms, an allelopathic filamentous green alga, Uronema confervicolum, and a common diatom, Fistulifera saprophila. Our results showed that functions critical for benthic phototrophic microorganisms were inhibited by U. confervicolum extracts. Growth, cell motility, adhesion, and photosynthetic activity were impaired at extract concentrations ranging between 5 and 20 μg ml⁻¹. The adhesion inhibition was mediated by intracellular nitric oxide (NO) induction. A bioassay-guided fractionation of the extract with HPLC helped to identify two C18 fatty acids present in the growth-inhibiting fractions: linoleic (LA) and α-linolenic (LNA) acids. These compounds represented 77 % of the total free fatty acids of U. confervicolum and were present in the culture medium (1.45 μg l⁻¹ in total). Both could inhibit the diatom growth at concentrations higher than 0.25 μg ml⁻¹, but had no effect on cell adhesion. The discrepancy between the effective concentrations of fatty acids and the concentration found in culture medium may be explained by the presence of high-concentration microenvironments. The compounds involved in adhesion inhibition remain to be identified. Though further experiments with complex biofilms are needed, our results suggest that U. confervicolum may participate to the control of biofilm composition by inhibiting diatom adhesion.
Mostrar más [+] Menos [-]Phytoextraction of uranium from contaminated soil by Macleaya cordata before and after application of EDDS and CA Texto completo
2015
Li, Chang-wu | Hu, Nan | Ding, De-xin | Hu, Jin-song | Li, Guang-yue | Wang, Yong-dong
This is the first report on using Macleaya cordata for phytoextraction of uranium from the uranium contaminated soil in the greenhouse. Macleaya M. cordata was found to increase uranium concentration in the soil solution by increasing the dissolved organic carbon (DOC). The amendment experiments with citric acid (CA) and [S,S]-ethylenediamine disuccinic acid (EDDS) at the rates of 1.0, 2.5, 5.0, and 10.0 mmol kg⁻¹dry weight (DW) soil showed that EDDS was more efficient to increase uranium concentration in the shoot than CA when they were applied at the same rate. The applications of 5.0 mmol kg⁻¹EDDS and 10.0 mmol kg⁻¹CA were most appropriate for increasing uranium concentrations in the shoot of M. cordata. CA was more efficient to increase the solubility of uranium at the same application rates except for 2.5 mmol kg⁻¹application rate. There was a linear correlation between the uranium concentration in the shoot and the average uranium concentration of one planted pot during 14 days in soil solution after the application of different rates of EDDS and CA, respectively (r² = 0.972, P < 0.01; r² = 0.948, P < 0.01), indicating that uranium uptake was dependent on the soluble uranium concentration. The Fe-U-DOC and Mn-U-DOC complexes were probably formed after the application of CA. Soil solution pH and Fe, Mn, Ca, and DOC concentrations in soil solution were found to be changed by the chelates.
Mostrar más [+] Menos [-]Prediction of water quality index in constructed wetlands using support vector machine Texto completo
2015
Mohammadpour, Reza | Shaharuddin, Syafiq | Chang, Chun Kiat | Zakaria, Nor Azazi | Ghani, Aminuddin Ab | Chan, Ngai Weng
Poor water quality is a serious problem in the world which threatens human health, ecosystems, and plant/animal life. Prediction of surface water quality is a main concern in water resource and environmental systems. In this research, the support vector machine and two methods of artificial neural networks (ANNs), namely feed forward back propagation (FFBP) and radial basis function (RBF), were used to predict the water quality index (WQI) in a free constructed wetland. Seventeen points of the wetland were monitored twice a month over a period of 14 months, and an extensive dataset was collected for 11 water quality variables. A detailed comparison of the overall performance showed that prediction of the support vector machine (SVM) model with coefficient of correlation (R²) = 0.9984 and mean absolute error (MAE) = 0.0052 was either better or comparable with neural networks. This research highlights that the SVM and FFBP can be successfully employed for the prediction of water quality in a free surface constructed wetland environment. These methods simplify the calculation of the WQI and reduce substantial efforts and time by optimizing the computations.
Mostrar más [+] Menos [-]Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications Texto completo
2015
Losfeld, Guillaume | L’Huillier, Laurent | Fogliani, Bruno | Coy, Stéphane Mc | Grison, Claude | Jaffré, Tanguy
Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications Texto completo
2015
Losfeld, Guillaume | L’Huillier, Laurent | Fogliani, Bruno | Coy, Stéphane Mc | Grison, Claude | Jaffré, Tanguy
Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator.
Mostrar más [+] Menos [-]Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications Texto completo
2015
Losfeld, Guillaume | L’huillier, Laurent | Fogliani, Bruno | Coy, Stéphane Mc | Grison, Claude | Jaffré, Tanguy | Bio-inspired Chemistry and Ecological Innovations (ChimEco) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) | Institut Agronomique Néo-Calédonien (IAC) | Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie]) | ANR-11-ECOT-0011,Opportunité(E)4,La valorisation chimique et le recyclage vert des déchets miniers : une opportunité Environnementale, Ecologique, Ethique et Economique(2011)
International audience | Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator.
Mostrar más [+] Menos [-]Mining in New Caledonia: environmental stakes and restoration opportunities Texto completo
2015
Losfeld, Guillaume | L’Huillier, Laurent | Fogliani, Bruno | Jaffré, Tanguy | Grison, Claude
Mining in New Caledonia: environmental stakes and restoration opportunities Texto completo
2015
Losfeld, Guillaume | L’Huillier, Laurent | Fogliani, Bruno | Jaffré, Tanguy | Grison, Claude
New Caledonia is a widely recognised marine and terrestrial biodiversity hot spot. However, this unique environment is under increasing anthropogenic pressure. Major threats are related to land cover change and include fire, urban sprawling and mining. Resulting habitat loss and fragmentation end up in serious erosion of the local biodiversity. Mining is of particular concern due to its economic significance for the island. Open cast mines were exploited there since 1873, and scraping out soil to access ores wipes out flora. Resulting perturbations on water flows and dramatic soil erosion lead to metal-rich sediment transport downstream into rivers and the lagoon. Conflicting environmental and economic aspects of mining are discussed in this paper. However, mining practices are also improving, and where impacts are inescapable ecological restoration is now considered. Past and ongoing experiences in the restoration of New Caledonian terrestrial ecosystems are presented and discussed here. Economic use of the local floristic diversity could also promote conservation and restoration, while providing alternative incomes. In this regard, Ecocatalysis, an innovative approach to make use of metal hyperaccumulating plants, is of particular interest.
Mostrar más [+] Menos [-]Mining in New Caledonia: environmental stakes and restoration opportunities Texto completo
2015
Losfeld, Guillaume | L’huillier, Laurent | Fogliani, Bruno | Jaffré, Tanguy | Grison, Claude | Bio-inspired Chemistry and Ecological Innovations (ChimEco) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) | Institut Agronomique Néo-Calédonien (IAC) | Laboratoire de Botanique et d'Ecologie Végétale Appliquées | Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie]) | ANR-11-ECOT-0011,Opportunité(E)4,La valorisation chimique et le recyclage vert des déchets miniers : une opportunité Environnementale, Ecologique, Ethique et Economique(2011)
International audience | New Caledonia is a widely recognised marine and terrestrial biodiversity hot spot. However, this unique environment is under increasing anthropogenic pressure. Major threats are related to land cover change and include fire, urban sprawling and mining. Resulting habitat loss and fragmentation end up in serious erosion of the local biodiversity. Mining is of particular concern due to its economic significance for the island. Open cast mines were exploited there since 1873, and scraping out soil to access ores wipes out flora. Resulting perturbations on water flows and dramatic soil erosion lead to metal-rich sediment transport downstream into rivers and the lagoon. Conflicting environmental and economic aspects of mining are discussed in this paper. However, mining practices are also improving, and where impacts are inescapable ecological restoration is now considered. Past and ongoing experiences in the restoration of New Caledonian terrestrial ecosystems are presented and discussed here. Economic use of the local floristic diversity could also promote conservation and restoration, while providing alternative incomes. In this regard, Ecocatalysis, an innovative approach to make use of metal hyperaccumulating plants, is of particular interest.
Mostrar más [+] Menos [-]Biodegradation of chitosan and its effect on metal bioavailability Texto completo
2015
Kamari, A. | Pulford, I. D. | Hargreaves, J. S. J.
The microbial breakdown of chitosan, a fishery waste-based material, and its derivative cross-linked chitosans, in both non-contaminated and contaminated conditions was investigated in a laboratory incubation study. Biodegradation of chitosan and cross-linked chitosans was affected by the presence of heavy metals. Zn was more pronounced in inhibiting microbial activity than Cu and Pb. It was estimated that a longer period is required to complete the breakdown of the cross-linked chitosans (up to approximately 100 years) than unmodified chitosan (up to approximately 10 years). The influence of biodegradation on the bioavailable fraction of heavy metals was studied concurrently with the biodegradation trial. It was found that the binding behaviour of chitosan for heavy metals was not affected by the biodegradation process.
Mostrar más [+] Menos [-]