Refinar búsqueda
Resultados 1971-1980 de 7,921
Experimental and DFT investigation on N-functionalized biochars for enhanced removal of Cr(VI)
2021
Zhao, Nan | Zhao, Chuanfang | Liu, Kunyuan | Zhang, Weihua | Tsang, Daniel C.W. | Yang, Zaikuan | Yang, Xixiang | Yan, Bofang | Morel, J. L. (Jean-Louis) | Qiu, Rongliang
In this study, N-functionalized biochars with varied structural characteristics were designed by loading poplar leaf with different amounts of urea at 1:1 and 1:3 ratios through pyrolysis method. The addition of urea significantly increased the N content of biochar and facilitated the formation of amine (-NH-, -NH₂), imine (-HCNH), benzimidazole (-C₇H₅N₂), imidazole (-C₃H₃N₂), and pyrimidine (-C₄H₃N₂) groups due to substitution reaction and Maillard reaction. The effect of pH on Cr(VI) removal suggested that decrease in solution pH favored the formation of electrostatic attraction between the protonated functional groups and HCrO₄⁻. And, experimental and density functional theory study were used to probe adsorption behaviors and adsorption mechanism which N-functionalized biochars interacted with Cr(VI). The protonation energy calculations indicated that N atoms in newly formed N-containing groups were better proton acceptors. Adsorption kinetics and isotherm experiments exhibited that N-functionalized biochars had greater removal rate and removal capacity for Cr(VI). The removal rate of Cr(VI) on N-functionalized biochar was 10.5–15.5 times that of untreated biochar. Meanwhile, N-functionalized biochar of NB3 with the largest number of adsorption sites for -C₇H₅N₂, -NH₂, -OH, -C₃H₃N₂, and phthalic acid (-C₈H₅O₄) exhibited the supreme adsorption capacity for Cr(VI) through H bonds and the highest adsorption energy was −5.01 kcal/mol. These mechanistic findings on the protonation and adsorption capacity are useful for better understanding the functions of N-functionalized biochars, thereby providing a guide for their use in various environmental applications.
Mostrar más [+] Menos [-]Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations
2021
Cheng, Yao | Mai, Lei | Lu, Xingwen | Li, Zhe | Guo, Ying | Chen, Da | Wang, Fei
Although the occurrence and distribution of various chemicals on microplastics (MPs) has been widely studied, little was known about the concentrations of poly- and perfluoroalkyl substances (PFASs) on MPs. In this study, MPs from eight rivers draining into Pearl River Estuary (PRE) region were collected and analyzed. Higher concentrations of PFASs on MPs (105–9.07 × 10³ ng g⁻¹) were found in the drain outlets receiving wastewater from most urbanized cities with large population densities. On the other hand, lower concentrations of PFASs on MPs (10.3–227.8 ng g⁻¹) were found in the drain outlets receiving wastewater mostly from agricultural and forested areas. Specially, 8:2 disubstituted polyfluoroalkyl phosphates (8:2 diPAP) was detected with the highest frequency, in 92.5% of the samples. Furthermore, a positive Spearman correlation was found between 6:2 disubstituted polyfluoroalkyl phosphates (6:2 diPAP) and perfluorotetradecanoic acid (PFTeDA) (rₛ = 0.621, p = 0.012), indicating they might share similar sources. PFASs on MPs were found to vary significantly with different seasons. Higher concentrations of PFASs on MPs were found in dry seasons, while lower concentrations were observed in wet seasons. The results of this study should be important for the understanding of PFAS occurrence and distribution on MPs and the partitioning mechanism of PFASs on MPs in estuary systems.
Mostrar más [+] Menos [-]Occurrence and spatio-seasonal distribution of organophosphate tri- and di-esters in surface water from Dongting Lake and their potential biological risk
2021
Xu, Liang | Zhang, Biao | Hu, Qiongpu | Liu, Yi | Shang, Ding | Zeng, Xiangying | Yu, Zhiqiang
In this study, 24 surface water samples were collected from Dongting Lake, China, in the wet and dry seasons, then the concentrations, composition profiles and spatio-seasonal variations of nine organophosphate triesters (OPEs) and five organophosphate diesters (Di-OPs) were determined. Significantly higher total OPE concentrations (∑OPEs) were observed in the wet season (49.5–148 ng L⁻¹) than in the dry season (5.00–45.7 ng L⁻¹) suggesting higher input via tributaries discharge as well as wet deposition in the studied region. Whereas lower levels of TnBP and (triphenyl phosphate (TPHP) in wet season reflected their possible degradation under solar irradiation. Comparable levels of total Di-OPs (∑Di-OPs) were found in the wet season (3.41–13.9 ng L⁻¹) and dry season (1.01–12.3 ng L⁻¹). Tri(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate were the main OPE components, while diphenyl phosphate, di-n-butyl phosphate and bis(1,3-dichloro-2-propyl) phosphate were the main Di-OP components. High levels of OPEs and Di-OPs were found in Datong Lake suggesting possible local emissions potentially related to fishery activity in the land-locked lake. Samples at river mouths to the lake also have higher levels of target OPEs and Di-OPs, the results disclosed obvious discharges from tributaries in Hunan Province. Negligible non-carcinogenic and carcinogenic risks were determined based on the measured concentrations in source waters. A limited ecological risk aquatic organisms in the Dongting Lake was identified, with most risk from TPHP.
Mostrar más [+] Menos [-]Analysis of lead distribution in avian organs by LA-ICP-MS: Study of experimentally lead-exposed ducks and kites
2021
Torimoto, Ryouta | Ishii, Chihiro | Sato, Hiroshi | Saitō, Keisuke | Watanabe, Yukiko | Ogasawara, Kohei | Kubota, Ayano | Matsukawa, Takehisa | Yokoyama, Kazuhito | Kobayashi, Atsushi | Kimura, Kei | Nakayama, Shouta M.M. | Ikenaka, Yoshinori | Ishizuka, Mayumi
Lead poisoning of wild birds by ingestion of lead ammunition occurs worldwide. Histopathological changes in organs of lead-intoxicated birds are widely known, and lead concentration of each organ is measurable using mass spectrometry. However, detailed lead localization at the suborgan level has remained elusive in lead-exposed birds. Here we investigated the detailed lead localization in organs of experimentally lead-exposed ducks and kites by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). In both the ducks and kites, lead accumulated diffusely in the liver, renal cortex, and brain. Lead accumulation was restricted to the red pulp in the spleen. With regard to species differences in lead distribution patterns, it is noteworthy that intensive lead accumulation was observed in the arterial walls only in the kites. In addition, the distribution of copper in the brain was altered in the lead-exposed ducks. Thus, the present study shows suborgan lead distribution in lead-exposed birds and its differences between avian species for the first time. These findings will provide fundamental information to understand the cellular processes of lead poisoning and the mechanisms of species differences in susceptibility to lead exposure.
Mostrar más [+] Menos [-]Chronic pesticide exposure induced aberrant Notch signalling along the visual pathway in a murine model
2021
Sanyal, Shalini | Law, Sujata
Pesticides aid in crop-protection against pests and increase yield. However, the xenobiotic stress exerted by pesticides leads to the deterioration of human and animal health. There is a lacuna in our knowledge about their impact on the ocular surface The present work sheds light on this gap by analysing the deterioration of visual acuity as a consequence of pesticide induced xenobiotic stress and Notch pathway dysregulation.Alteration in the expression of vital components of the notch signalling was analyzed along the visual pathway with special focus on its two terminals-the cornea and the visual cortex, by mimicking the on-field scenario regarding chronic pesticide exposure in experimental murine model (Swiss albino mice; Mus musculus). Various aspects were taken into consideration through visual acuity tests, histological evaluations, culture analyses, wound healing assays, flowcytometric evaluation, fluorescence microscopic studies etc. Complete dysregulation of key players of the Notch signalling pathway was observed in both: cells of the ocular surface as well as those in the murine visual cortex post pesticide exposure, indicating activities relating to cell proliferation, differentiation and wound healing in the pesticide exposed samples. Ultra-microscopic analyses corroborated our findings by revealing the loss of fine neural processes in the visual cortex of the pesticide exposed murine samples, thereby hinting at delayed perception to visual stimuli. In vivo evaluations of the functional capacity of the neuroanatomical structures along the visual pathway also confirmed that pesticide exposure leads to severe damage along the various parts of the visual pathway, right from the ocular surface to the visual cortex.
Mostrar más [+] Menos [-]Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella
2021
Xu, Yi-Huan | Hogstrand, Christer | Xu, Yi-Chuang | Zhao, Tao | Zheng, Hua | Luo, Zhi
Oxytetracycline (OTC) and Cu are prevalent in aquatic ecosystems and their pollution are issues of serious concern. The present working hypothesis is that the toxicity of Cu and OTC mixture on physiological activity of fish was different from single OTC and Cu alone. The present study indicated that, compared to single OTC or Cu alone, Cu+OTC mixture reduced growth performance and feed utilization of grass carp, escalated the contents of Cu, OTC and TG, increased lipogenesis, induced oxidative stress, damaged the mitochondrial structure and functions and inhibited the lipolysis in the liver tissues and hepatocytes of grass carp. Cu+OTC co-treatment significantly increased the mRNA abundances and protein expression of Nrf2. Moreover, we found that Cu+OTC mixture-induced oxidative stress promoted Nrf2 recruitment to the SREBP-1 promoter and increased SREBP-1-mediated lipogenesis; Nrf2 sited at the crossroads of oxidative stress and lipid metabolism, and mediated the regulation of oxidative stress and lipid metabolism. Our findings clearly indicated that OTC and Cu mixture differed in environmental risks from single antibiotic or metal element itself, and thus posed different toxicological responses to aquatic animals. Moreover, our findings suggested that Nrf2 functioned as an important antioxidant regulator linking oxidative stress to lipogenic metabolism, and thus elucidated a novel regulatory mechanism for lipid metabolism.
Mostrar más [+] Menos [-]The incorporation of lemongrass oil into chitosan-nanocellulose composite for bioaerosol reduction in indoor air
2021
Mishra, Disha | Yadav, Ranu | Pratap Singh, Raghvendra | Taneja, Ajay | Tiwari, Rahul | Khare, Puja
The bioaerosols present in indoor air play a major role in the transmission of infectious diseases to humans, therefore concern about their exposure is increased recently. In this regard, the present investigation described the preparation of lemongrass essential oil (LGEO) loaded chitosan and cellulose nanofibers composites (CH/CNF) for controlling the indoor air bioaerosol. The evaluation of the inhibitory effect of the composite system on culturable bacteria of the indoor air was done at different sites (air volume from 30 m³ to 80 m³) and in different size fractions of aerosol (<0.25 μm–2.5 μm). The composite system had high encapsulation efficiency (88–91%) and citrals content. A significant reduction in culturable bacteria of aerosol (from 6.23 log CFUm⁻³ to 2.33 log CFUm⁻³) was observed in presence of cellulose nanofibers and chitosan composites. The bacterial strains such as Staphylococcus sp., Bacillus cereus, Bacillus pseudomycoides sp., Pseudomonas otitidis, and Pseudomonas sp. Cf0-3 in bioaerosols were inhibited dominantly due to the diffusion of aroma molecules in indoor air. The results indicate that the interaction of diffused aroma molecule from the composite system with bacterial strains enhanced the production of ROS, resulting in loss of membrane integrity of bacterial cells. Among different size fractions of aerosol, the composite system was more effective in finer size fractions (<0.25 μm) of aerosol due to the interaction of smaller aroma compounds with bacterial cells. The study revealed that LGEO loaded chitosan and cellulose nanofibers composites could be a good option for controlling the culturable bacteria even in small-sized respirable bioaerosol.
Mostrar más [+] Menos [-]In situ prepared algae-supported iron sulfide to remove hexavalent chromium
2021
Wu, Jun | Zheng, Hao | Hou, Jun | Miao, Lingzhan | Zhang, Fang | Zeng, Raymond Jianxiong | Xing, Baoshan
The effects of algae on the removal of contaminant by iron sulfide (FeS) are still unknown. Chlorella vulgaris (CV), a remarkable algal specie, was used to prepare the CV-supported FeS (CV-FeS) and to investigate the role that CV plays in the removal of a heavy metal (i.e., hexavalent chromium (Cr(VI)) by FeS. The stabilized effect from algal extracellular polymeric substance (EPS) enhanced the reactivity of FeS due to the decrease of FeS aggregation, thus increasing Cr(VI) removal rate from 0.21 min⁻¹ to 0.79 min⁻¹. Furthermore, the strong buffering induced by the algal functional groups could effectively prevent the solution pH from increasing, which improved Cr(VI) removal because acidic solution facilitated Cr(VI) reduction by FeS. However, the complexing capacity from algal EPS made Fe(II) unavailable for Cr(VI) reduction, which led to 35% decrease of Cr(VI) removal. The Fe(II) was oxidized to α-FeOOH by Cr(VI) in the absence of CV, while the unreacted Fe(II) was detected as in the form of Fe(OH)₂ in CV-FeS. Cr(VI) was reduced to Cr(III) and S(-II) was oxidized to elemental sulfur (S₈) regardless of the CV. This work showed the different roles of algae in the removal of Cr(VI) by FeS and provided value information for the application of FeS in the polluted algae-containing water system.
Mostrar más [+] Menos [-]Polyethylene microbeads are more critically toxic to the eyes and reproduction than the kidneys or growth in medaka, Oryzias latipes
2021
Chisada, Shinichi | Yoshida, Masao | Karita, Kanae
Many studies using experimental and wild animals have reported negative effects of microplastic beads (MPs) ingestion. However, data regarding the lowest observed adverse effect levels (LOAELs) of MPs remain limited. Our aim was to evaluate the adverse effect levels of polyethylene MPs (10–63 μm diameter) with respect to growth, reproduction, and the eyes and kidneys of medaka (Oryzias latipes) under breeding conditions to contribute to future research involving LOAEL determinations. Fish were exposed to 0.009 mg-MPs (approximately 1000 particles)/L to 0.32 mg-MPs (approximately 40,000 particles)/L for 12 weeks. The eyes and kidneys were evaluated by histopathologic analysis. Although histologic analyses indicated an absence of MPs in the tissues, the eyes and kidneys as well as reproduction were adversely affected by increasing MP concentrations. The number of spawned eggs decreased, and changes were noted in the eyes of fish exposed to ≥0.032 mg-MPs/L under breeding conditions. The eyes exhibited thinning of the optic nerve fiber layer and dilatation of retinal capillaries compared with medaka not treated with MPs. Changes in the kidneys were observed in fish exposed to ≥0.065 mg-MPs/L. The mesangial matrix in the glomerulus of the kidneys was expanded compared with non-treated medaka, suggesting a deterioration in renal function. Analyses of an oxidative stress marker in the tissues indicated that lesion progression was associated with increased oxidative stress. Furthermore, a comparison of adverse effect levels suggested that MPs were more toxic to the eyes and reproduction than the kidneys or growth. Our data should prove useful for determining the LOAELs of polyethylene beads on vertebrates and enhance understanding of the mechanism underlying the biological toxicity of polyethylene MPs.
Mostrar más [+] Menos [-]MicroRNA-760 resists ambient PM2.5-induced apoptosis in human bronchial epithelial cells through elevating heme-oxygenase 1 expression
2021
Xu, Lin | Zhao, Qianwen | Li, Daochuan | Luo, Jiao | Ma, Wanli | Jin, Yuan | Li, Chuanhai | Chen, Jing | Zhao, Kunming | Zheng, Yuxin | Yu, Dianke
PM₂.₅ (particles matter smaller aerodynamic diameter of 2.5 μm) exposure, a major environmental risk factor for the global burden of diseases, is associated with high risks of respiratory diseases. Heme-oxygenase 1 (HMOX1) is one of the major molecular antioxidant defenses to mediate cytoprotective effects against diverse stressors, including PM₂.₅-induced toxicity; however, the regulatory mechanism of HMOX1 expression still needs to be elucidated. In this study, using PM₂.₅ as a typical stressor, we explored whether microRNAs (miRNAs) might modulate HMOX1 expression in lung cells. Systematic bioinformatics analysis showed that seven miRNAs have the potentials to target HMOX1 gene. Among these, hsa-miR-760 was identified as the most responsive miRNA to PM₂.₅ exposure. More importantly, we revealed a “non-conventional” miRNA function in hsa-miR-760 upregulating HMOX1 expression, by targeting the coding region and interacting with YBX1 protein. In addition, we observed that exogenous hsa-miR-760 effectively elevated HMOX1 expression, reduced the reactive oxygen agents (ROS) levels, and rescued the lung cells from PM₂.₅-induced apoptosis. Our results revealed that hsa-miR-760 might play an important role in protecting lung cells against PM₂.₅-induced toxicity, by elevating HMOX1 expression, and offered new clues to elucidate the diverse functions of miRNAs.
Mostrar más [+] Menos [-]