Refinar búsqueda
Resultados 1991-2000 de 2,492
A new bioseed for determination of wastewater biodegradability: analysis of the experimental procedure
2014
Ballesteros Martín, M. M. | Esteban García, B. | Ortega-Gómez, E. | Sánchez Pérez, J. A.
A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5 % in biodegradation efficiency (Ef) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD₅/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs).
Mostrar más [+] Menos [-]Residual and cumulative effects of soil application of sewage sludge on corn productivity
2014
Vieira, Rosana Faria | Moriconi, Waldemore | Pazianotto, Ricardo Antônio Almeida
The objective of this study was to evaluate the effect of frequent and periodic applications of sewage sludge to the soil, on corn productivity. The experiment was carried out as part of an experiment that has been underway since 1999, using two types of sludge. One came from the Barueri Sewage Treatment Station (BS, which receives both household and industrial sludge) and the other came from the Franca Sewage Treatment Station (FS, which receives only household sludge). The Barueri sludge was applied from 1999 up to the agricultural year of 2003/2004. With the exception of the agricultural years of 2004/2005 and 2005/2006, the Franca sludge was applied up to 2008/2009. All the applications were made in November, with the exception of the first one which was made in April 1999. After harvesting the corn, the soil remained fallow until the next cultivation. The experiment was set up as a completely randomized block design with three replications and the following treatments: control without chemical fertilization or sludge application, mineral fertilization, and dose 1 and dose 2 of sludge (Franca and Barueri). The sludges were applied individually. Dose 1 was calculated by considering the recommended N application for corn. Dose 2 was twice dose 1. It was evident from this work that the successive application of sludge to the soil in doses sufficient to reach the productivity desired with the use of nitrogen fertilizers could cause environmental problems due to N losses to the environment and that the residual and cumulative effects should be considered when calculating the application of sludge to soil.
Mostrar más [+] Menos [-]Adsorption of soluble oil from water to graphene
2014
Wang, Na | Zhang, Yuchang | Zhu, Fuzhen | Li, Jingyi | Liu, Shuaishuai | Na, Ping
The toxicity of soluble oil to the aquatic environment has started to attract wide attention in recent years. In the present work, we prepare graphene according to oxidation and thermal reduction methods for the removal of soluble oil from the solution. Characterization of the as-prepared graphene are performed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and contact angle analysis. The adsorption behavior of soluble oil on graphene is examined, and the obtained adsorption data are modeled using conventional theoretical models. Adsorption experiments reveal that the adsorption rate of soluble oil on graphene is notably fast, especially for the soluble diesel oil, which could reach equilibrium within 30 min, and the kinetics of adsorption is perfectly consistent with a pseudo-second-order model. Furthermore, it is determined that the adsorption isotherm of soluble diesel oil with graphene fit the Freundlich model best, and graphene has a very strong adsorption capacity for soluble diesel oil in the solution. These results demonstrate that graphene is the material that provided both good adsorptive capacity and good kinetics, implying that it could be used as a promising sorbent for soluble oil removal from wastewater.
Mostrar más [+] Menos [-]Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent
2014
Venkatesh, Avinash | Chopra, Nikita | Krupadam, Reddithota J.
Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon.
Mostrar más [+] Menos [-]Adsorptive removal and photocatalytic decomposition of sulfamethazine in secondary effluent using TiO2–zeolite composites
2014
Ito, Misaki | Fukahori, Shuji | Fujiwara, Taku
We investigated the adsorption and decomposition of sulfamethazine (SMT), which is used as a synthetic antibacterial agent and discharged into environmental water, using high-silica Y-type zeolite (HSZ-385), titanium dioxide (TiO₂), and TiO₂–zeolite composites. By using ultrapure water and secondary effluent as solvents, we prepared SMT solutions (10 μg/L and 10 mg/L) and used them for adsorption and photocatalytic decomposition experiments. When HSZ-385 was used as an adsorbent, rapid adsorption of SMT in the secondary effluent was confirmed, and the adsorption reached equilibrium within 10 min. The photocatalytic decomposition rate using TiO₂in the secondary effluent was lower than that in ultrapure water, and we clarified the inhibitory effect of ions and organic matter contained in the secondary effluent on the reaction. We synthesized TiO₂–zeolite composites and applied them to the removal of SMT. During the treatment of 10 μg/L SMT in the secondary effluent using the composites, 76 % and more than 99 % of the SMT were decomposed within 2 and 4 h by photocatalysis. The SMT was selectively adsorbed onto high-silica Y-type zeolite in the composites. Resultantly, the inhibitory effect of the coexisting materials was reduced, and the composites could remove SMT more effectively compared with TiO₂alone in the secondary effluent.
Mostrar más [+] Menos [-]SoilTrEC: a global initiative on critical zone research and integration
2014
Menon, Manoj | Rousseva, Svetla | Nikolaidis, Nikolaos P. | van Gaans, Pauline | Panagos, Panos | de Souza, Danielle Maia | Ragnarsdottir, Kristin Vala | Lair, Georg J. | Weng, Liping | Bloem, Jaap | Kram, Pavel | Novák, Martin | Davidsdottir, Brynhildur | Guðrún Gísladóttir, | Robinson, David A. | Reynolds, Brian | White, Tim | Lundin, Lars | Zhang, Bin | Duffy, Christopher | Bernasconi, Stefano M. | de Ruiter, Peter | Blum, Winfried E. H. | Banwart, Steven A.
Soil is a complex natural resource that is considered non-renewable in policy frameworks, and it plays a key role in maintaining a variety of ecosystem services (ES) and life-sustaining material cycles within the Earth's Critical Zone (CZ). However, currently, the ability of soil to deliver these services is being drastically reduced in many locations, and global loss of soil ecosystem services is estimated to increase each year as a result of many different threats, such as erosion and soil carbon loss. The European Union Thematic Strategy for Soil Protection alerts policy makers of the need to protect soil and proposes measures to mitigate soil degradation. In this context, the European Commission-funded research project on Soil Transformations in European Catchments (SoilTrEC) aims to quantify the processes that deliver soil ecosystem services in the Earth's Critical Zone and to quantify the impacts of environmental change on key soil functions. This is achieved by integrating the research results into decision-support tools and applying methods of economic valuation to soil ecosystem services. In this paper, we provide an overview of the SoilTrEC project, its organization, partnerships and implementation.
Mostrar más [+] Menos [-]Survey of cyanobacterial toxins in Czech water reservoirs—the first observation of neurotoxic saxitoxins
2014
Jančula, Daniel | Straková, Lucie | Sadílek, Jan | Maršálek, Blahoslav | Babica, Pavel
The environmental occurrence and concentrations of cyanobacterial toxins (cyanotoxins) were investigated in the Czech Republic. Concentrations of microcystins (MCs), cylindrospermopsin (CYN) or saxitoxins (STXs) were determined immunochemically by ELISA assays in 30 water samples collected from the surface layers of 19 reservoirs during the summer season of 2010. MCs were detected in 18 reservoirs and 83 % of samples, with median and maximal concentration being 1.5 and 18.6 μg/L, respectively. The high frequency of MC occurrence coincided with prevalence of cyanobacterium Microcystis sp., which was detected in 87 % samples, followed by Dolichospermum (Anabaena) sp. observed in 33 % samples. CYN was detected by ELISA only in one sample at a concentration of 1.2 μg/L. STXs presence was indicated for the first time in Czech water reservoirs when the toxins were found at low concentrations (0.03–0.04 μg/L) in two samples (7 %) collected from two different reservoirs, where STXs co-occurred with MCs and eventually also with CYN. In both STX-positive samples, the phytoplankton community was dominated by Microcystis sp., but Dolichospermum sp. and/or Aphanizomenon sp. were also present as putative producers of STX and/or CYN. Cyanotoxins commonly occurred in Czech water reservoirs, and MCs frequently at concentrations possibly associated with human health risks. MCs were the most prevalent and abundant cyanotoxins, but also other cyanotoxins were detected, though sporadically. Further research and regulatory monitoring of cyanotoxins other than MCs is therefore required.
Mostrar más [+] Menos [-]Influence of the organic loading rate on the performance and the granular sludge characteristics of an EGSB reactor used for treating traditional Chinese medicine wastewater
2014
Li, Weiguang | Su, Chengyuan | Liu, Xingzhe | Zhang, Lei
The effects of the organic loading rate (OLR) on the performance and the granular sludge characteristics of an expanded granular sludge bed (EGSB) reactor used for treating real traditional Chinese medicine (TCM) wastewater were investigated. Over 90 % of the COD removal by the EGSB reactor was observed at the OLRs of 4 to 13 kg COD/(m³ day). However, increasing the OLR to 20 kg COD/(m³ day) by reducing the hydraulic retention time (HRT 6 h) reduced the COD removal efficiency to 78 %. The volatile fatty acid (VFA) concentration was 512.22 mg/L, resulting in an accumulation of VFAs, and propionic acid was the main acidification product, accounting for 66.51 % of the total VFAs. When the OLR increased from 10 to 20 kg COD/(m³ day), the average size of the granule sludge decreased from 469 to 258 μm. There was an obvious reduction in the concentration of Ca²⁺and Mg²⁺in the granular sludge. The visible humic acid-like peak was identified in the three-dimensional excitation-emission matrix (EEM) fluorescence spectra of the soluble microbial products (SMPs). The fatty acid bond, amide II bond, amide III bond, and C–H bond bending were also observed in the Fourier transform infrared (FTIR) spectra of the SMPs. Methanobacterium formicicum, Methanococcus, and Bacteria populations exhibited significant shifts, and these changes were accompanied by an increase in VFA production. The results indicated that a short HRT and high OLR in the EGSB reactor caused the accumulation of polysaccharides, protein, and VFAs, thereby inhibiting the activity of methanogenic bacteria and causing granular sludge corruption.
Mostrar más [+] Menos [-]Synergistic degradation of deca-BDE by an enrichment culture and zero-valent iron
2014
Chen, Xingjuan | Chen, Guilan | Qiu, Mengde | Sun, Guoping | Guo, Jun | Xu, Meiying
Debromination of decabromodiphenyl ether (deca-BDE) by microbe and by zero-valent iron (ZVI) has been reported previously. However, no study has indicated the presence of microorganisms and their effect on ZVI-mediated reduction of deca-BDE. Synergistic degradation of deca-BDE by an enrichment culture and ZVI was studied. It was found that synergistic effects enhanced the debromination of deca-BDE as well as promoting the reduction of lower brominated products. ZVI stimulated microbial debromination by serving as an electron donor. Correlation analysis also confirmed that ZVI was capable of enhancing microbial population in the debromination of deca-BDE. Conversely, the enrichment culture produced acid which maintained pH stability and stimulated the oxidation of ZVI. The enrichment culture supplied its energy requirements by the oxidation of ZVI and concomitant reduction of deca-BDE, but incapable of growth and reduction of BDE-209 without ZVI and vice versa. Compared to the initial culture, the microbial community of the enrichment culture became dominated by several bacterial genera based on the results of 16S rRNA-gene pyrosequencing.
Mostrar más [+] Menos [-]Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea
2014
Song, Sang-Keun | Shon, Zang-Ho
The emissions of exhaust gases (NO ₓ , SO₂, VOCs, and CO₂) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes (“at sea,” “maneuvering,” and “in port”) and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO₂, VOCs, PM, and CO₂were highest (9.6 × 10³, 374, 1.2 × 10³, and 5.6 × 10⁵ton year⁻¹, respectively) in 2008. In contrast, the annual NO ₓ emissions were highest (11.7 × 10³ton year⁻¹) in 2006 due mainly to the high NO ₓ emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in “in port” mode. In addition, the largest fraction (approximately 45–67 %) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO₂and PM) in 2020 and 2050 are estimated to be 1.4–1.8 and 4.7–6.1 times higher than those in 2009 (base year), respectively.
Mostrar más [+] Menos [-]