Refinar búsqueda
Resultados 211-220 de 679
Addressing the global challenge of coastal sewage pollution Texto completo
2024
Rangel-buitrago, Nelson | Galgani, Francois | Neal, William J.
Coastal environments, essential for about half of the world's population living near coastlines, face severe threats from human-induced activities such as intensified urbanization, aggressive development, and particularly, coastal sewage pollution. This type of pollution, comprising untreated sewage discharging nutrients, pathogens, heavy metals, microplastics, and organic compounds, significantly endangers these ecosystems. The issue of sewage in coastal areas is complex, influenced by factors like inadequate sewage systems, septic tanks, industrial and agricultural runoff, and natural processes like coastal erosion, further complicated by oceanic dynamics like tides and currents. A global statistic reveals that over 80 % of sewage enters the environment without treatment, contributing significantly to nitrogen pollution in coastal ecosystems. This pollution not only harms marine life and ecosystems through chemical contaminants and eutrophication, leading to hypoxic zones and biodiversity loss, but also affects human health through waterborne diseases and seafood contamination. Additionally, it has substantial economic repercussions, impacting tourism, recreation, and fisheries, and causing revenue and employment losses. Addressing this issue globally involves international agreements and national legislations, but their effectiveness is hindered by infrastructural disparities, particularly in developing countries. Thus, effective management requires a comprehensive approach including advanced treatment technologies, stringent regulations, regular monitoring, and international cooperation. The international scientific community plays a crucial role in fostering a collaborative and equitable response to this pressing environmental challenge.
Mostrar más [+] Menos [-]Early signals of Posidonia oceanica meadows recovery in a context of wastewater treatment improvements Texto completo
2024
Bockel, Thomas | Marre, Guilhem | Delaruelle, Gwenaëlle | Agel, Noémie | Boissery, Pierre | Guilhaumon, François | Mouquet, Nicolas | Mouillot, David | Guilbert, Antonin | Deter, Julie
Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented “success stories” to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.
Mostrar más [+] Menos [-]Comparative analysis of microplastics detection methods applied to marine sediments: A case study in the Bay of Marseille Texto completo
2024
Gerigny, Olivia | Blanco, Gustavo | Lips, Urmas | Buhhalko, Natalja | Chouteau, Leelou | Georges, Elise | Meyers, Nelle | Vanavermaete, David | Galgani, Francois | Ourgaud, Melanie | Papillon, Laure | Sempéré, Richard | De Witte, Bavo
An intercomparison exercise on “microplastics in sediment” was carried out by five laboratories using samples collected in the Bay of Marseille in September 2021. The results from different extraction and identification methods varied depending on the type and size classes of MPs, and was better than 80 % for the size class >300 μm and for the fragments. The variability in recovery rates can be attributed to the choice of reagents and extraction protocols. Recovery rates per laboratory were between 47 % and 113 % and the use of ZnCl2 and NaI increased recovery rates by an average of 70 %. The lowest recovery rates (47 and 53 %) were attributed to the reference methods (FTIR and LDIR), conversely the highest (80 and 87 %) were attributed to identification by Nile Red. The average ranged between 23 and 53 items /50 g d.w. with decreases offshore and at greater depth.
Mostrar más [+] Menos [-]Evaluation of microplastic pollution using bee colonies : An exploration of various sampling methodologies Texto completo
2024
Cortés-Corrales, Laura | Flores, Jose Javier | Rosa, Adrian | van der Steen, Jozef J.M. | Vejsnæs, Flemming | Roessink, Ivo | Martínez-Bueno, Maria Jesús | Fernández-Alba, Amadeo R.
Recent research has highlighted the potential of honeybees and bee products as biological samplers for monitoring xenobiotic pollutants. However, the effectiveness of these biological samplers in tracking microplastics (MPs) has not yet been explored. This study evaluates several methods of sampling MPs, using honeybees, pollen, and a novel in-hive passive sampler named the APITrap. The collected samples were characterized using a stereomicroscopy to count and categorise MPs by morphology, colour, and type. To chemical identification, a micro-Fourier transform-infrared (FTIR) spectroscopy was employed to determine the polymer types. The study was conducted across four consecutive surveillance programmes, in five different apiaries in Denmark. Our findings indicated that APITrap demonstrated better reproducibility, with a lower variation in results of 39%, compared to 111% for honeybee samples and 97% for pollen samples. Furthermore, the use of APITrap has no negative impact on bees and can be easily applied in successive samplings. The average number of MPs detected in the four monitoring studies ranged from 39 to 67 in the APITrap, 6 to 9 in honeybee samples, and 6 to 11 in pollen samples. Fibres were the most frequently found, accounting for an average of 91% of the total MPs detected in the APITrap, and similar values for fragments (5%) and films (4%). The MPs were predominantly coloured black, blue, green and red. Spectroscopy analysis confirmed the presence of up to five different synthetic polymers. Polyethylene terephthalate (PET) was the most common in case of fibres and similarly to polypropylene (PP), polyethylene (PE), polyacrylonitrile (PAN) and polyamide (PA) in non fibrous MPs. This study, based on citizen science and supported by beekeepers, highlights the potential of MPs to accumulate in beehives. It also shows that the APITrap provides a highly reliable and comprehensive approach for sampling in large-scale monitoring studies.
Mostrar más [+] Menos [-]Water hyacinths retain river plastics Texto completo
2024
Schreyers, Louise J. | van Emmerik, Tim H.M. | Bui, Thanh-Khiet L. | Biermann, Lauren | Uijlenhoet, Remko | Nguyen, Hong Quan | Wallerstein, Nicholas | van der Ploeg, Martine
Rivers are main conduits for the delivery of plastics to the sea, while also functioning as reservoirs for plastic retention. In tropical regions, rivers are exposed to both high levels of plastic pollution and invasion of water hyacinths. This aquatic plant forms dense patches at the river surface that drift due to winds and currents. Recent work suggests that water hyacinths play a crucial role in influencing plastic transport, by efficiently trapping the majority of surface plastic within their patches. However, a comprehensive understanding of the interaction between water hyacinths and plastics is still lacking. We hypothesize that the properties relevant to plastic transport change due to their trapping in water hyacinth patches. In particular, the length scale, defined as the characteristic size of the transported material, is a key property in understanding how materials move within rivers. Here, we show that water hyacinth patches trap on average 54%–77% of all observed surface plastics at the measurement site (Saigon river, Vietnam). Both temporally and spatially, we found that plastic and water hyacinth presence co-occur. The formation of plastic-plant aggregates carries significant implications for both clean-up and monitoring purposes, as these aggregates can be detected from space and need to be jointly removed. In addition, the length scale of trapped plastics (4.0 m) was found to be forty times larger than that of open water plastics (0.1 m). The implications of this increased length scale for plastic transport dynamics are yet to be fully understood, calling for further investigation into travel distances and trajectories. The effects of plastic trapping likely extend to other key properties of plastic-plant aggregates, such as effective buoyancy and mass. Given the prevalence of plant invasion and plastic pollution in rivers worldwide, this research offers valuable insights into the complex environmental challenges faced by numerous rivers.
Mostrar más [+] Menos [-]Do electromagnetic fields from subsea power cables effect benthic elasmobranch behaviour? A risk-based approach for the Dutch Continental Shelf Texto completo
2024
Hermans, Annemiek | Winter, Hendrik V. | Gill, Andrew B. | Murk, Albertinka J.
Subsea power cables cause electromagnetic fields (EMFs) into the marine environment. Elasmobranchs (rays, skates, sharks) are particularly sensitive to EMFs as they use electromagnetic-receptive sensory systems for orientation, navigation, and locating conspecifics or buried prey. Cables may intersect with egg laying sites, mating, pupping, and nursery grounds, foraging habitat and migration routes of elasmobranchs and the effects of encountering EMFs on species of elasmobranchs are largely unknown. Demonstrated behavioural effects are attraction, disturbance and indifference, depending on EMF characteristics, exposed life stage, exposure level and duration. We estimated exposure levels of elasmobranchs to subsea power cable EMFs, based on modelled magnetic fields in the Dutch Continental Shelf and compared these to reported elasmobranch sensory sensitivity ranges and experimental effect levels. We conclude that the risk from subsea power cables has a large uncertainty and varies per life stage and species ecology. Based on estimated no-observed effect levels (from 10−3 to 10−1 μT) we discuss what will probably be the most affected species and life stage for six common benthic elasmobranchs in the Southern North Sea. We then identify critical knowledge gaps for reducing the uncertainty in the risk assessments for EMFs effects on benthic elasmobranchs.
Mostrar más [+] Menos [-]Natural soundscapes of lowland river habitats and the potential threat of urban noise pollution to migratory fish Texto completo
2024
te Velde, Kees | Mairo, Amy | Peeters, Edwin T.H.M. | Winter, Hendrik V. | Tudorache, Christian | Slabbekoorn, Hans
Migratory fish populations have experienced great declines, and considerable effort have been put into reducing stressors, such as chemical pollution and physical barriers. However, the importance of natural sounds as an information source and potential problems caused by noise pollution remain largely unexplored. The spatial distribution of sound sources and variation in propagation characteristics could provide migratory fish with acoustic cues about habitat suitability, predator presence, food availability and conspecific presence. We here investigated the relationship between natural soundscapes and local river conditions and we explored the presence of human-related sounds in these natural soundscapes. We found that 1a) natural river sound profiles vary with river scale and cross-sectional position, and that 1b) depth, width, water velocity, and distance from shore were all significant factors in explaining local soundscape variation. We also found 2a) audible human activities in almost all our underwater recordings and urban and suburban river parts had elevated sound levels relative to rural river parts. Furthermore, 2b) daytime levels were louder than night time sound levels, and bridges and nearby road traffic were much more prominent with diurnal and weekly patterns of anthropogenic noise in the river systems. We believe our data show high potential for natural soundscapes of low-land river habitat to serve as important environmental cues to migratory fish. However, anthropogenic noise may be particularly problematic due to the omnipresence, and relatively loud levels relative to the modest dynamic range of the natural sound sources, in these slow-flowing freshwater systems.
Mostrar más [+] Menos [-]Revealing the role of land-use features on macrolitter distribution in Swiss freshwaters Texto completo
2024
Schreyers, L.J. | Erismann, R. | Erismann, S. | Ludwig, C. | Patel, B. | Filella, M. | van Emmerik, T.H.M.
Macrolitter, especially macroplastics, (> 0.5 cm) negatively impact freshwater ecosystems, where they can be retained along lake shores, riverbanks, floodplains or bed sediments. Long-term and large-scale assessments of macrolitter on riverbanks and lake shores provide an understanding of litter abundance, composition, and origin in freshwater systems. Combining macrolitter quantification with hydrometeorological variables allows further study of leakage, transport, and accumulation characteristics. Several studies have explored the role of hydrometeorological factors in influencing macrolitter distribution and found that river discharge, runoff, and wind only partially explains its distribution. Other factors, such as land-use features, have not yet been thoroughly investigated. In this study, we provide a country-scale assessment of land-use influence on macrolitter abundance in freshwater systems. We analyzed the composition of the most commonly found macrolitter items (referred to as ‘top items’, n = 42,565) sampled across lake shores and riverbanks in Switzerland between April 2020 and May 2021. We explored the relationship between eleven land-use features and macrolitter abundance at survey locations (n = 143). The land-use features included buildings, city centers, public infrastructure, recreational areas, forests, marshlands, vineyards, orchards, other land, and rivers and canals. The majority of top items are significantly and positively correlated with land-use features related to urban coverage, notably roads and buildings. Over 60% of top items were found to be correlated with either roads or buildings. Notably, tobacco, food and beverage-related products, as well as packaging and sanitary products, showed strong associations with these urban land-use features. Other types of items, however, did not exhibit a relationship with land-use features, such as industry and construction-related items. Ultimately, this highlights the need to combine measures at the local and regional/national scales for effective litter reduction.
Mostrar más [+] Menos [-]Effects of LDPE and PBAT plastics on soil organic carbon and carbon-enzymes : A mesocosm experiment under field conditions Texto completo
2024
Jia, Xinkai | Yao, Yu | Tan, Gaowei | Xue, Sha | Liu, Mengjuan | Tang, Darrell W.S. | Geissen, Violette | Yang, Xiaomei
Although the effects of plastic residues on soil organic carbon (SOC) have been studied, variations in SOC and soil carbon-enzyme activities at different plant growth stages have been largely overlooked. There remains a knowledge gap on how various varieties of plastics affect SOC and carbon-enzyme activity dynamics during the different growing stages of plants. In this study, we conducted a mesocosm experiment under field conditions using low-density polyethylene and poly (butylene adipate-co-terephthalate) debris (LDPE-D and PBAT-D, 500–2000 μm (pieces), 0%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%), and low-density polyethylene microplastics (LDPE-M, 500–1000 μm (powder), 0%, 0.05%, 0.1%, 0.5%) to investigate SOC and C-enzyme activities (β-xylosidase, cellobiohydrolase, β-glucosidase) at the sowing, seedling, flowering and harvesting stages of soybean (Glycine Max). The results showed that SOC in the LDPE-D treatments significantly increased from the flowering to harvesting stage, by 12.69%–13.26% (p 0.05), but significantly decreased in the 0.05% and 0.1% LDPE-M treatments from the sowing to seedling stage (p 0.05). However, PBAT-D had no significant effect on SOC during the whole growing period. For C-enzyme activities, only LDPE-D treatments inhibited GH (17.22–38.56%), BG (46.7–66.53%) and CBH (13.19–23.16%), compared to treatment without plastic addition, from the flowering stage to harvesting stage. Meanwhile, C-enzyme activities and SOC responded nonmonotonically to plastic abundance and the impacts significantly varied among the growing stages, especially in treatments with PBAT-D (p 0.05). These risks to soil organic carbon cycling are likely mediated by the effects of plastic contamination and degradation soil microbe. These effects are sensitive to plastic characteristics such as type, size, and shape, which, in turn, affect the biogeochemical and mechanical interactions involving plastic particles. Therefore, further research on the interactions between plastic degradation processes and the soil microbial community may provide better mechanistic understanding the effect of plastic contamination on soil organic carbon cycling.
Mostrar más [+] Menos [-]3D analysis of microplastic settling in algal suspensions Texto completo
2024
de Rijk, V. | Barchiesi, M. | Kooi, M. | Koelmans, A.A.
The influence of algae presence in surface water on the settling velocities of microplastics is unknown, and determining it is challenging due to the turbidity of algal suspensions. Measuring the settling velocity of microplastics has traditionally relied on either manual measurement techniques or 2D Particle Tracking Velocimetry (PTV). This study introduces a 3D-PTV method tailored to determine the effects of algae (Synechoccocus sp.) on microplastic settling speeds in semi-large columns. We demonstrated that 3D PTV produces much more accurate results than 2D particle tracking. Testing the method in six experiments with varying algae concentrations revealed consistent results across the experiments and alignment with some theoretical approximations. The results were concurrent with calculated 2D speeds. No influence of algal density on settling velocities was found, which is highly relevant for microplastic fate modeling in eutrophic systems. We highlight the applicability and accuracy of 3D particle tracking velocimetry in further understanding microplastic settling behavior.
Mostrar más [+] Menos [-]