Refinar búsqueda
Resultados 2121-2130 de 3,197
Assessing plant protection practices using pressure indicator and toxicity risk indicators: analysis of therelationship between these indicators for improved risk management, application in viticulture
2015
Oussama, Mghirbi | Kamel, Ellefi | Philippe, Le Grusse | Elisabeth, Mandart | Jacques, Fabre | Habiba, Ayadi | Jean-Paul, Bord
The excessive use of plant protection products (PPPs) has given rise to issues of public and environmental health because of their toxicity. Reducing the use of toxic PPPs and replacing them with products that are less toxic for human health and the environment have become socially, environmentally and economically indispensable. In this article, we assess the plant protection practices of a small group of winegrowers practicing “integrated agriculture” in the south of France, in order to measure the benefit of using toxicity risk indicators as a decision-support tool for different players in land management. An analysis of plant protection practices using indicators of the risk to operator health and the environment (IRSA, IRTE), together with a frequency-of-treatment indicator (TFI), enabled us to (i) show the variability of these indicators depending on the production system and farmers’ pesticide use strategies and (ii) calculate correlations between these indicators. This analysis of plant protection practices at different scales (farm, field), carried out in collaboration with the growers, enabled us to perform an initial validation of decision-support tools for determining risk management strategies regarding the use of pesticides.
Mostrar más [+] Menos [-]Characterization and risk assessment of polychlorinated biphenyls in soils and rice tissues in a suburban paddy field of the Pearl River Delta, South China
2015
Li, Qilu | Wang, Yan | Luo, Chunling | Li, Jun | Zhang, Gan
We investigated the concentration and composition of polychlorinated biphenyls (PCBs) in paddy soils and rice tissues and the associated potential health risks in the urban agricultural areas of the Pearl River Delta (PRD), South China. The results indicated that highly chlorinated PCBs were more prominent in soil when the concentrations of low-molecular-weight PCBs were relatively high in rice plants. There was a trend of decreasing PCB concentrations with soil depth and a significant correlation between PCBs and the total organic carbon or total nitrogen concentration in section soils. The PCB concentrations followed the order of root > leaf > stem > grain. Although the dioxin toxicity equivalency values and estimated daily intake levels (based direct and indirect consumption) were lower than in other seriously contaminated regions, there is still a need to monitor PCB pollution in urban agriculture because of the PCB emissions from capacitor storage following the rapid urbanization experienced in the PRD.
Mostrar más [+] Menos [-]Assessment of total bacterial cells in extended aeration activated sludge plants using flow cytometry as a microbial monitoring tool
2015
Abzazou, Tarik | Salvadó, Humbert | Bruguera-Casamada, Carmina | Simón, Pedro | Lardín, Carlos | Araujo, Rosa M
The extended aeration activated sludge (EAAS) process is one of the most applied biological processes in small towns. Here, we study the abundance and viability of total bacterial cells in two wastewater treatment plants (WWTPs) operating with an EAAS process. We use flow cytometry (FCM) combined with SYTO13 and propidium iodide (PI) dyes as a rapid, easy, reliable and accurate microbial monitoring tool. A disaggregation procedure with an ultrasonic bath was designed to detach total bacterial cells from activated sludge flocs for subsequent FCM analysis. This procedure permitted the recovery of total bacterial cells from sludge flocs without affecting bacterial viability, as indicated by bacterial strain controls. Since FCM is a multi-parameter technique, it was possible to determine total bacterial abundance and their viability in the activated sludge. As a comparative method, epifluorescence microscopy was also used to quantify total bacterial cells; both methods produced similar results. The FCM analysis revealed relative microbial stability in both the WWTPs. The total bacterial abundance quantified by FCM in the two plants studied was 1.02–6.23 × 10¹¹ cells L⁻¹ with 70–72 % viability, one logarithm less than that reported in the literature for WWTPs using the conventional activated sludge process. This can be explained by the difference in the operational parameters between the conventional plant and EAAS, mainly the organic loading rate.
Mostrar más [+] Menos [-]Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review
2015
Simonin, Marie | Richaume, Agnès
This report presents an exhaustive literature review of the effects of engineered nanoparticles on soil microbial communities. The toxic effects on microbial communities are highly dependent on the type of nanoparticles considered. Inorganic nanoparticles (metal and metal oxide) seem to have a greater toxic potential than organic nanoparticles (fullerenes and carbon nanotubes) on soil microorganisms. Detrimental effects of metal and metal oxide nanoparticles on microbial activity, abundance, and diversity have been demonstrated, even for very low concentrations (<1 mg kg⁻¹). On the opposite, the negative effects of carbon nanoparticles are observed only in presence of high concentrations (>250 mg kg⁻¹), representing a worst case scenario. Considering that most of the available literature has analyzed the impact of an acute contamination of nanoparticles using high concentrations in a single soil, several research needs have been identified, and new directions have been proposed. The effects of realistic concentrations of nanoparticles based on the concentrations predicted in modelization studies and chronic contaminations should be simulated. The influence of soil properties on the nanoparticle toxicity is still unknown and that is why it is crucial to consider the ecotoxicity of nanoparticles in a range of different soils. The identification of soil parameters controlling the bioavailability and toxicity of nanoparticles is fundamental for a better environmental risk assessment.
Mostrar más [+] Menos [-]The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment
2015
Rösch, Carolin | Wissenbach, Dirk K. | von Bergen, Martin | Franck, Ulrich | Wendisch, Manfred | Schlink, Uwe
Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m³). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m⁻³. We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm⁻³. The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.
Mostrar más [+] Menos [-]Competitive sorption and desorption of trace elements by Tunisian Aridisols Calcorthids
2015
Sahraoui, Hamdi | Andrade, María Luisa | Hachicha, Mohamed | Vega, Flora Alonso
The sorption and retention processes play an important role in determining the bioavaibility and fate of trace elements in soils. Sorption and desorption of Pb²⁺, Zn²⁺, Ni²⁺, Cu²⁺, and Co²⁺ in three Tunisian Aridisols Calcorthids (AR1, AR2, and AR3) were studied using batch experiments. Sorption and retention capacities were determined by means of K ᵣ parameter and they were related to soil properties. The results showed that in all studied soils, K ᵣ values for Pb²⁺ and Cu²⁺ were higher than those of Zn²⁺, Ni²⁺, and Co²⁺ indicating that soils have higher affinity for the first ones. The high sorption and retention capacity of the three studied soils is ascribed to their alkaline pH and their high carbonates contents favoring the precipitation of these elements. Moreover, bivariate correlation analysis showed that sorption and retention of the studied cations was also strongly correlated with clay fraction and Fe oxides contents. All soils show high sorption irreversibility of Pb²⁺, Zn²⁺, Ni²⁺, Cu²⁺, and Co²⁺. The soils with highest sorption capacity show also the highest irreversibility.
Mostrar más [+] Menos [-]Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution
2015
Chand, Piar | Pakade, Yogesh B.
Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L⁻¹) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g⁻¹ for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.
Mostrar más [+] Menos [-]Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons
2015
Lipińska, Aneta | Wyszkowska, Jadwiga | Kucharski, Jan
Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil’s resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg⁻¹ of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of dehydrogenases was dependent on a greater extent by the type of hydrocarbon (54.56 %) rather than by the dose (10.64 %), while for the activity of urease, it was the opposite. The greater extent was dependent on dose (95.42 %) rather than by type (0.21 %). Dehydrogenases are characterised by greater resistance to the action of PAHs than urease. Based on seed germination and root growth, it has shown that S. alba is best suited, being the most vulnerable plant, while S. saccharatum is the least suited. Subjecting a soil to strong pressure of PAHs leads to disturbances to the biological parameters of the soil, seed germination, and root growth L. sativum, S. saccharatum, and S. alba.
Mostrar más [+] Menos [-]The transfer and fate of Pb from sewage sludge amended soil in a multi-trophic food chain: a comparison with the labile elements Cd and Zn
2015
Dar, Mudasir Irfan | Khan, Fareed Ahmad | Green, Iain D. | Naikoo, Mohd Irfan
The contamination of agroecosystems due to the presence of trace elements in commonly used agricultural materials is a serious issue. The most contaminated material is usually sewage sludge, and the sustainable use of this material within agriculture is a major concern. This study addresses a key issue in this respect, the fate of trace metals applied to soil in food chains. The work particularly addresses the transfer of Pb, which is an understudied element in this respect, and compares the transfer of Pb with two of the most labile metals, Cd and Zn. The transfer of these elements was determined from sludge-amended soils in a food chain consisting of Indian mustard (Brassica juncea), the mustard aphid (Lipaphis erysimi) and a predatory beetle (Coccinella septempunctata). The soil was amended with sludge at rates of 0, 5, 10 and 20 % (w/w). Results showed that Cd was readily transferred through the food chain until the predator trophic level. Zn was the most readily transferred element in the lower trophic levels, but transfer to aphids was effectively restricted by the plant regulating shoot concentration. Pb had the lowest level of transfer from soil to shoot and exhibited particular retention in the roots. Nevertheless, Pb concentrations were significantly increased by sludge amendment in aphids, and Pb was increasingly transferred to ladybirds as levels increased. The potential for Pb to cause secondary toxicity to organisms in higher trophic levels may have therefore been underestimated.
Mostrar más [+] Menos [-]Characterization of carbonaceous aerosols at Mount Lu in South China: implication for secondary organic carbon formation and long-range transport
2015
Li, Peng-hui | Wang, Yan | Li, Tao | Sun, Lei | Yi, Xianliang | Guo, Li-qiong | Su, Rui-hong
In order to understand the sources and potential formation processes of atmospheric carbonaceous aerosols in South China, fine particle samples were collected at a high-elevation mountain site—Mount Lu (29°35′ N, 115°59′ E, 1165 m A.S.L.) during August–September, 2011. Eight carbonaceous fractions from particles were resolved following the IMPROVE thermal/optical reflectance protocol. During the observation campaign, the daily concentrations of PM₂.₅ at Mount Lu ranged from 7.69 to 116.39 μg/m³, with an average of 58.76 μg/m³. The observed average organic carbon (OC) and elemental carbon (EC) concentrations in PM₂.₅ were 3.78 and 1.28 μg/m³, respectively. Secondary organic carbon (SOC) concentration, estimated by EC-tracer method, was 2.07 μg/m³ on average, accounting for 45.0 % of the total OC. The enhancement of secondary organic aerosol (SOA) formation was observed during cloud/fog processing, and heterogeneous acid-catalyzed reactions may have contributed to SOA formation as well. Back trajectory analysis indicated that air masses were mainly sourced from southern China during observation period, and this air mass source was featured by highest values of OC and effective carbon ratio (ECR). Relation of carbonaceous species and principal component analysis indicated that multiple sources contributed to the carbonaceous aerosols at Mount Lu.
Mostrar más [+] Menos [-]