Refinar búsqueda
Resultados 2121-2130 de 4,938
The effect of temperature on airborne filamentous fungi in the indoor and outdoor space of a hospital Texto completo
2019
Abbasi, Fariba | Samaei, Mohammad Reza
Fungi are one of the bioaerosols in indoor air of hospitals. They have adverse effects on staff and patients. The aim of this study was to investigate the effects of three incubation temperature on the density and composition of airborne fungi in an indoor and outdoor space of hospital. Sabouraud dextrose agar was used for culture the fungi. For improvement of aseptic properties, chloramphenicol was added to this medium. The density of airborne fungi was less than 282 CFU/m³. The highest density was detected in emergency room and the lowest of them was in neonatal intensive care unit (NICU) and operation room (OR). Results showed that fungi levels at 25 °C were higher than 37 and 15 °C (p = 0.006). In addition, ten different genera of fungi were identified in all departments. The predominant fungi were Fusarium spp., Penicillium spp., Paecilomyces spp., and Aspergillus niger. Moreover, the density and trend of distribution of Fusaruim spp. in the indoor space was directivity to outdoor space by ventilation system. The present study has provided that incubation temperature had effect on airborne fungi remarkably. We are suggested that more studies would be conducted on incubation temperature and other ambient factors on airborne fungi.
Mostrar más [+] Menos [-]Adsorption of Rare Earth Elements onto the Phosphogypsum a Waste Byproduct Texto completo
2019
Hagag, M. S. | Morsy, A. M. A. | Ali, A. H. | El-Shiekh, A. S.
Phosphogypsum (PG), the waste byproduct resulting from wet process phosphoric acid production, is employed as a selective and effective adsorbent for total rare earth elements (REEs) from aqueous solution and leach liquor. The elaboration of PG adsorbent complemented after some physical treatments. Adsorption and elution studies carried out in experimental batches, including the effect of pH, adsorbent dose, initial REE concentration, and equilibrium time. Adsorption of REEs onto PG fitted well with Langmuir isotherm with a theoretical capacity surpassed 357 mg/g. REEs were effectively eluted from loaded PG with 2 mol L⁻¹ HCl acid with an efficiency of 94%. PG showed an outstanding selectivity towards REEs in the presence of many cations and anions, for instance (Fe³⁺, UO₂²⁺, Ca²⁺, SO₄²⁻, NO₃⁻). Different qualitative techniques such as EDS, SEM, and FTIR used to emphasize the adsorption of REEs onto PG. The film diffusion model was the preponderant adsorption mechanism for REEs; also, the adsorption process has a good accordance with pseudo-second-order kinetic model.
Mostrar más [+] Menos [-]Ultrastructural damage and biochemical alterations in the testes of red palm weevils (Rhynchophorus ferrugineus) exposed to imidacloprid Texto completo
2019
Alzahrani, Abdullah M.
Despite the widespread use of the insecticide imidacloprid (IMI), a neonicotinoid, there is an urgent need for documenting information related to its acute toxicity. Therefore, this study aims to explore the markers of IMI acute toxicity in the testes of the red palm weevil (Rhynchophorus ferrugineus). The LC₅₀ of IMI was determined at 15.7 ppm for male R. ferrugineus. We assessed biochemical alterations in the testes resulting from treatment with four IMI concentrations (10, 15, 20, and 30 ppm). A reduction in glutathione content and acetylcholine esterase activity followed the IMI concentration in a dependent manner. Catalase activity was inhibited only at 20 ppm, while it increased significantly at 30 ppm. Lipid peroxidation increased steadily as the IMI concentrations increased. Based on ultrastructural analyses of spermiogenic stages, acute IMI toxicity produced swelling and degeneration of spermatid mitochondria indicating structural imbalances in their membranes. Further, abnormal chromatin condensation in nuclei and even loss of sperm were also apparent. This study provides biochemical and ultrastructural indicators for acute toxicity resulting from IMI.
Mostrar más [+] Menos [-]Membrane biofouling retardation by zwitterionic peptide and its impact on the bacterial adhesion Texto completo
2019
Wang, Si-Yu | Han, Deng-Cheng | Song, Chao | Li, Meng-Na | Afzal, Muhammad Zaheer | Wang, Shu-Guang | Sun, Xue-Fei
Nanofiltration polyamide membranes naturally tend towards biofouling, due to their surface physicochemistries. Nisin, a type of short cationic amphiphilic peptide with antimicrobial properties, has been recognized as a safe antimicrobial for food biopreservation and biomedical applications. This study investigates the impact of nisin on the initial bacterial attachment to membranes, its anti-biofouling properties, and characterizes a non-monotonic correlation between nisin concentration and biofilm inhibition. Nisin was found to inhibit B. subtilis (G+) and P. aeruginosa (G−) attachment to both the nanofiltration membrane and the PES membrane. To determine the mechanism of action, we investigated the polysaccharides, protein, and eDNA as target components. We found that the quantities of polysaccharides and eDNA were significantly changed, resulting in bacterial death and anti-adhesion to membrane. However, there were no discernable impacts on protein. We postulated that nisin could prevent irreversible biofouling by decreasing adhesion, killing bacteria, and reducing biofilm formation. We examined membrane flux behavior through bench-scale cross-flow experiments at a set concentration of nisin (100 μg mL⁻¹), with membrane behavior being confirmed using CLSM images. Results showed that nisin could enhance anti-biofouling properties through both anti-adhesive and anti-bacterial effects, and therefore could be a novel strategy against biofouling of membranes.
Mostrar más [+] Menos [-]Soil Microbial Metabolic Activity and Community Structure in Drip-Irrigated Calcareous Soil as Affected by Irrigation Water Salinity Texto completo
2019
Guo, Huijuan | Hu, Zhiqiang | Zhang, Huimin | Hou, Zhenan | Min, Wei
Saline water irrigation can dramatically change the soil environment and thereby influence soil microbial processes. The objective of this field experiment was to use Biolog and high-throughput sequencing methods to evaluate the metabolic activity and community structure of soil microorganisms after 9 years of saline water irrigation. The results showed that brackish and saline water irrigation significantly increased soil bulk density and salinity, but significantly decreased soil pH, TN, SOM, MBC, and metabolic activity. The Biolog tests of sole-carbon-source utilization indicated that the brackish and saline water treatments significantly reduced the utilization of four carbohydrate sources (D-cellobiose, β-methyl-d-glucoside, D-mannitol, and glucose-1-phosphate), two amino acid sources (L-asparagine and glycyl-L-glutamic acid), two carboxylic acid sources (D-galacturonic acid and D-malic acid), and two polymer sources (Tween 80 and glycogen). Brackish and saline water increased soil bacterial richness (ACE and Chao 1 indices) but had no effect on which bacterial phyla were present. Brackish and saline irrigation water significantly increased the relative abundance of four dominant bacterial phyla (Gemmatimonadetes, Actinobacteria and Chloroflexi, Saccharibacteria). In contrast, the relative abundance of five dominant phyla (Proteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia) was reduced by brackish and saline irrigation water. Our study suggests that soil bacterial community will form significant differences species under different irrigation water salinity, which can adapt to saline stress by adjusting the species composition. The results of this study increase understanding about the potential effects of saline water irrigation on soil biological processes.
Mostrar más [+] Menos [-]Analysis of influencing factors of the carbon dioxide emissions in China’s commercial department based on the STIRPAT model and ridge regression Texto completo
2019
Wen, Lei | Shao, Hengyang
Commercial department assumes the vital part in energy conservation and carbon dioxide emission mitigation of China. This paper applies the time-series data covering 2001–2015 and introduces the STIRPAT method to research the factors of commercial department’s carbon dioxide emissions in China. The combination of STIRPAT method and ridge regression is first adopted to research carbon dioxide emissions of commercial department in China. Potential influencing factors of carbon dioxide emission, including economic growth, level of urbanization, aggregate population, energy intensity, energy structure and foreign direct investment, are selected to establish the extended stochastic impacts by regression on population, affluence and technology (STIRPAT) model, where ridge regression is adopted to eliminate multicollinearity. The estimation consequences show that all forces were positively related to carbon dioxide emissions in China’s commercial department except for energy structure. Energy structure is the only negative factor and aggregate population is the maximal influencing factor of carbon dioxide emissions. The economic growth, urbanization level, energy intensity and foreign direct investment all positively contribute to carbon dioxide emissions of commercial department. The findings have significant implications for policy-makers to enact emission reduction policies in commercial sector. Therefore, the paper ought to take into full consideration these different impacts of above influencing factors to abate carbon dioxide emissions of commercial sector.
Mostrar más [+] Menos [-]Sewage contamination under water scarcity effects on stream biota: biofilm, grazers, and their interaction Texto completo
2019
Calapez, Ana Raquel | Elias, Carmen L. | Almeida, Salomé F. P. | Brito, António G. | Feio, Maria João
One of the most common anthropogenic impacts on river ecosystems is the effluent discharge from wastewater treatment plants. The effects of this contamination on stream biota may be intensified in Mediterranean climate regions, which comprise a drought period that leads to flow reduction, and ultimately to stagnant pools. To assess individual and combined effects of flow stagnation and sewage contamination, biofilm and gastropod grazers were used in a 5-week experiment with artificial channels to test two flow velocity treatments (stagnant flow/basal flow) and two levels of organic contamination using artificial sewage (no sewage input/sewage input). Stressors’ effects were determined on biofilm total biomass and chlorophyll (Chl) content, on oxygen consumption and growth rate of the grazers (Theodoxus fluviatilis), and on the interaction grazer-biofilm given by grazer’s feeding activity (i.e., biofilm consumption rate). The single effect of sewage induced an increase in biofilm biomass and Chl-a content, simultaneously increasing both grazers’ oxygen consumption and their feeding activity. Diatoms showed a higher sensitivity to flow stagnation, resulting in a lower content of Chl-c. Combined stressors interacted antagonistically for biofilm total biomass, Chl-b contents, and grazers’s feeding rate. The effect of sewage increasing biofilm biomass and grazing activity was reduced by the presence of flow stagnation (antagonist factor). Our findings suggest that sewage contamination has a direct effect on the functional response of primary producers and an indirect effect on primary consumers, and this effect is influenced by water flow stagnation.
Mostrar más [+] Menos [-]Optimizing nitrogen management to balance rice yield and environmental risk in the Yangtze River’s middle reaches Texto completo
2019
Wang, Jing | Fu, Penghao | Wang, Fei | Shah, Fahad | Mohapatra, Pravat K. | Chen, Yutiao | Zhang, Congde | Peng, Shaobing | Cui, Kehui | Nie, Lixiao | Huang, Jianliang
Currently, the urgency of balancing rice production and environmental risk from nitrogen (N) fertilization is gaining scientific and public attention. As such, a field experiment was conducted to investigate the rice yield and the fate of applied-¹⁵N for Yangliangyou 6 (a two-line hybrid cultivar) and Lvdaoq 7 (an inbred cultivar) using 10 combinations of N rates and splitting ratios in the middle reaches of the Yangtze River. The results showed that N application primarily affected fertilizer N loss to the environment, followed by plant N absorption, but had little effect on grain yield. Generally, there was no significant increase in grain yield and N accumulation in the aboveground plant when N inputs surpassed 130 or 170 kg ha⁻¹. Fertilizer N residue in soil peaked at approximately 48 kg ha⁻¹ at an N rate of 170 kg ha⁻¹ for both varieties; however, a sharp increase of fertilizer N loss occurred with further incrementally increasing N rates. Although a higher ratio of panicle-N fertilizer together with a lower ratio of tillering-N fertilizer at rates of 130, 170, and 210 kg ha⁻¹ had no grain yield benefit, it promoted aboveground N accumulation and plant N accumulation derived from fertilizer, and it reduced the amount of N residue in soil and N loss to the environment. Overall, reducing tillering-N ratios and increasing panicle-N ratios at an N rate between 130 and 170 kg ha⁻¹ using fertilizer rates of 90–0–40 kg ha⁻¹ and 90–40–40 kg ha⁻¹ N at basal-tillering-panicle initiation stages could reduce the adverse environmental risks of chemical N from rice production without sacrificing rice yield.
Mostrar más [+] Menos [-]Analysis of beta-blocker bioconcentration in brown planaria (Girardia dorotocephala) and its effects on regeneration Texto completo
2019
AminiTabrizi, Roya | Hassan, Dalia | Davis, Rachel | Tucker, Kevin R.
Production, distribution, and disposal of pharmaceutical products, including beta-blockers, have become a global issue. Beta-blockers are known to persist in the environment months after their release and may result in the disruption of the homeostatic system in non-target organisms. Here, we study the bioconcentration of three of the most commonly used beta-blockers and their effect on the regeneration of Girardia dorotocephala, a freshwater brown planarian. Acute toxicity tests determined LC₅₀s for acebutolol, metoprolol, and propranolol to be 778 mg/L, 711 mg/L, and 111 mg/L, respectively. The quantification and analysis of beta-blocker bioconcentration during acute exposure were performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). After 4 days of exposure to beta-blockers, the bioconcentration drastically decreased for all three beta-blockers at all exposure levels, suggesting that an effective mechanism to reduce uptake or excrete beta-blockers could be present. Additionally, Girardia dorotocephala were cut proximal to the head and the quality of regeneration was documented from each fragment daily. No significant difference was visually observed after 2 weeks of regeneration between the brown planarians placed in beta-blocker solution and those placed in control solution.
Mostrar más [+] Menos [-]Oxidation Dynamics and Composition of the Flotation Plant Derived Tailing Impoundment Aquisgrana (Spain) Texto completo
2019
Rojas, Diego | Hidalgo, M Carmen | Kohfahl, Claus | Rey, Javier | Martínez, Julián | Benavente, José
A tailing impoundment situated in the mining district of La Carolina (Spain), which stores waste resulting from the washing of Pb and Ag sulphides, was studied 30 years after it was abandoned. Fibre optic sensors were installed to record humidity, temperature, electrical conductivity and oxygen content in the pores down to a depth of 35.5 m. The oxygen profiles show an oxidised thickness of 5 m, meaning that the speed of the advancing oxidation front is estimated as 15 cm year⁻¹. Sediment samples were obtained from different depths, and parameters such as pH, carbonates and metal(loid)s, among others, were analysed. High concentrations of As (> 500 mg kg⁻¹), Fe (> 34,000 mg kg⁻¹), Mn (> 900 mg kg⁻¹), Pb (> 8000 mg kg⁻¹) and Zn (> 5000 mg kg⁻¹) were found. A piezometer was installed to enable the water inside the tailing pond to be sampled, and this presented high contents of SO₄²⁻ (> 2400 mg L⁻¹), Fe (> 28,000 μg L⁻¹), Mn (> 7800 μg L⁻¹) and Zn (> 7000 μg L⁻¹), suggesting that the mineral leaching was related to the oscillations in the water table. The water from two drainage adits situated at the foot of the impoundment was also analysed, as well as surface water both upstream and downstream from it. The speciation-saturation models applied for these water samples indicated that in spite of the contamination potential of the impoundment, the deterioration in the quality of the river water is mainly due to the discharge from mining drains and the dissolution processes of precipitates accumulated along the riverbanks.
Mostrar más [+] Menos [-]