Refinar búsqueda
Resultados 221-230 de 4,935
Uptake, translocation and distribution of three veterinary antibiotics in Zea mays L Texto completo
2019
Zhang, Cheng | Xue, Jianming | Cheng, Dengmiao | Feng, Yao | Liu, Yuanwang | Aly, Hesham M. | Li, Zhaojun
Frequently detected residuals of antibiotics in crops has drawn increasing attention from research community and the general public. This study was conducted under the controlled environmental conditions to investigate the uptake, translocation and distribution of three different veterinary antibiotics (VAs) in plants of Zea mays L. (maize, the third largest crop in the world, especially in China) and the associated mechanisms. The distribution color-maps of mixed-VAs showed that the highest RCF (root concentration factors) values of chlortetracycline (CTC) and sulfamethoxazole (SMZ) were found in the 0.5–2.0 mm zone (cell division zone), while the highest RCF value of sulfathiazole (ST) was in the 6.0–8.0 mm zone (elongation zone) of root tips (0.5–10.0 mm) after 120 h of exposure to VAs. The translocation factor (TF) of CTC was greater than 1.0, but the TFs of SMZ and ST were less than 1.0 under addition of single antibiotic. However, the TFs of three VAs were all greater than 1.0 at the end of exposure under addition of mixed-VAs. The dissipation of antibiotics by maize was also demonstrated by harvesting all plant parts in an enclosed system. The possible mechanisms for uptake and translocation of VAs in maize were investigated by adding multiple respiration inhibitors into the culture solution. The RCFs of VAs were suppressed heavily by salicylhydroxamic acid (SHAM) and sodium azide (NaN3), which indicates that the uptake of VAs was an active process. The results of TFs and stem concentration factors (SCFs) of CTC and SMZ in HgCl2 treatments revealed that the translocation of VAs was associated with the aquaporin activity in maize. The findings from this study will have significant implications for the management of crop food contamination by VAs and for the development of phytoremediation technology for antibiotics in the environment.
Mostrar más [+] Menos [-]Consistent microplastic ingestion by deep-sea invertebrates over the last four decades (1976–2015), a study from the North East Atlantic Texto completo
2019
Courtene-Jones, Winnie | Quinn, Brian | Ewins, Ciaran | Gary, Stefan F. | Narayanaswamy, Bhavani E.
Although evidence suggests the ubiquity of microplastics in the marine environment, our knowledge of its occurrence within remote habitats, such as the deep sea, is scarce. Furthermore, long term investigations of microplastic abundances are even more limited. Here we present a long-term study of the ingestion of microplastics by two deep-sea benthic invertebrates (Ophiomusium lymani and Hymenaster pellucidus) sampled over four decades. Specimens were collected between the years 1976–2015 from a repeat monitoring site >2000 m deep in the Rockall Trough, North East Atlantic. Microplastics were identified at a relatively consistent level throughout and therefore may have been present at this locality prior to 1976. Considering the mass production of plastics began in the 1940s - 50s our data suggest the relatively rapid occurrence of microplastics within the deep sea. Of the individuals examined (n = 153), 45% had ingested microplastics, of which fibres were most prevalent (95%). A total of eight different polymer types were isolated; polyamide and polyester were found in the highest concentrations and in the majority of years, while low-density polystyrene was only identified in 2015. This study provides an assessment of the historic occurrence of microplastics on the deep seafloor and presents a detailed quantification and characterisation of microplastics ingested by benthic species. Furthermore these data advance our knowledge on the long-term fate of microplastic in marine systems.
Mostrar más [+] Menos [-]Use of multiple regression models for predicting the formation of bromoform and dibromochloromethane during ballast water treatment based on an advanced oxidation process Texto completo
2019
Zhang, Xiaoye | Tian, Yiping | Zhang, Xiaofang | Bai, Mindong | Zhang, Zhitao
Disinfection byproducts (DBPs) generated by ballast water treatment have become a concern worldwide because of their potential threat to the marine environment. Predicting the relative DBP concentrations after disinfection could enable better control of DBP formation. However, there is no appropriate method of evaluating DBP formation in a full-scale ballast water treatment system (BWTS). In this study, multiple regression models were developed for predicting the dibromochloromethane (DBCM) and bromoform (TBM) concentrations produced by an emergency BWTS using field experimental data from ballast water treatments conducted at Dalian Port, China. Six combinations of independent variables [including several water parameters and/or the total residual oxidant (TRO) concentration] were evaluated to construct mathematical prediction formulas based on a polynomial linear model and logarithmic regression model. Further, statistical analyses were performed to verify and determine the appropriate mathematical models for DBCM and TBM formation, which were ultimately validated using additional field experimental data. The polynomial linear model with four variables (temperature, salinity, chlorophyll, and TRO) and the logarithmic regression model with seven variables (temperature, salinity, dissolved oxygen, pH, turbidity, chlorophyll, and TRO) exhibited good reproducibility and could be used to predict the DBCM and TBM concentrations, respectively. The validation results indicated that the developed models could accurately predict DBP concentrations, with no significant statistical difference from the measured values. The results of this work could provide a theoretical basis and data reference for ballast water treatment control in engineering applications of emergency BWTSs.
Mostrar más [+] Menos [-]BDE-209 induces autophagy and apoptosis via IRE1α/Akt/mTOR signaling pathway in human umbilical vein endothelial cells Texto completo
2019
Hou, Yun | Fu, Jiarong | Sun, Shitian | Jin, Yinchuan | Wang, Xifeng | Zhang, Lianshuang
Recently, the essentiality and fatalness of cardiovascular diseases is attracting much attention. Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants, which could induce the toxic effect and have been implicated in the occurrence and development of cardiovascular diseases. However, it is unclear how autophagy and apoptosis induced by BDE-209 in endothelial cells are regulated. The aim of the present study was to investigate the effects of BDE-209 on human umbilical vein endothelial cells (HUVECs) and elucidate the mechanisms involved. HUVECs were treated with a wide range concentration of BDE-209 for 24 h. The appearance of autophagy was tested by the testing index such as outcomes of monodansylcadaverine (MDC) staining and lysotracker staining, observation of autophagosomes and conversion between autophagy marker light chain 3 (LC3)-I and LC3-II. Besides, the apoptotic cell rate was detected with flow cytometry. In addition, BDE-209 induced endoplasmic reticulum (ER) stress was detected by transmission electron microscopy (TEM). Our data suggest that the exposure of BDE-209 could induce autophagy, which was confirmed by MDC staining, transmission electron microscopy observation, lysotracker staining and LC3-I/LC3-II conversion. Besides, the ER stress-related inositol-requiring enzyme 1α (IRE1α)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway could be activated by reactive oxygen species (ROS) to regulate autophagy. Moreover, the apoptosis of endothelial cells was alleviated when autophagy was blocked by 3-Methyladenine (3-MA). The results demonstrated that BDE-209 could induce the production of ROS and ER stress, activate autophagy through IRE1α/AKT/mTOR signaling pathway and ultimately induce apoptosis of vascular endothelial cells. These findings indicate that exposure to PBDE is possible to be a potential risk factor for cardiovascular diseases.
Mostrar más [+] Menos [-]Antibiotic resistance genes are abundant and diverse in raw sewage used for urban agriculture in Africa and associated with urban population density Texto completo
2019
Bougnom, Blaise P. | McNally, Alan | Etoa, François-X. | Piddock, Laura JV.
A comparative study was conducted to (1) assess the potential of raw sewage used for urban agriculture to disseminate bacterial resistance in two cities of different size in Cameroon (Central Africa) and (2) compare the outcome with data obtained in Burkina Faso (West Africa). In each city, raw sewage samples were sampled from open-air canals in three neighbourhoods. After DNA extraction, the microbial population structure and function, presence of pathogens, antibiotic resistance genes and Enterobacteriaceae plasmids replicons were analysed using whole genome shotgun sequencing and bioinformatics. Forty-three pathogen-specific virulenc e factor genes were detected in the sewage. Eighteen different incompatibility groups of Enterobacteriaceae plasmid replicon types (ColE, A/C, B/O/K/Z, FIA, FIB, FIC, FII, H, I, N, P, Q, R, T, U, W, X, and Y) implicated in the spread of drug-resistance genes were present in the sewage samples. One hundred thirty-six antibiotic resistance genes commonly associated with MDR plasmid carriage were identified in both cities. Enterobacteriaceae plasmid replicons and ARGs found in Burkina Faso wastewaters were also present in Cameroon waters. The abundance of Enterobacteriaceae, plasmid replicons and antibiotic resistance genes was greater in Yaounde, the city with the greater population.In conclusion, the clinically relevant environmental resistome found in raw sewage used for urban agriculture is common in West and Central Africa. The size of the city impacts on the abundance of drug-resistant genes in the raw sewage while ESBL gene abundance is related to the prevalence of Enterobacteriaceae along with plasmid Enterobacteriaceae abundance associated to faecal pollution.
Mostrar más [+] Menos [-]Diurnal and seasonal variations of greenhouse gas emissions from a commercial broiler barn and cage-layer barn in the Canadian Prairies Texto completo
2019
Huang, Dandan | Guo, Huiqing
Baseline emission values of greenhouse gases were not well established for commercial poultry barns in cold regions, including Canada, due to a lack of well-designed field studies. Emission factors of carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), were acquired for a commercial broiler barn and cage-layer barn in the Canadian Prairies climate. Between March 2015 and February 2016, monthly measurements throughout the year for the layer barn and over 6 flocks for the broiler barn, and diurnal measurements in the mild, warm, and cold seasons for both barns were conducted, respectively. The ventilation rate was estimated based on a CO₂ mass balance method; thus CO₂ emissions were quantified by the CIGR (2002) models. The CH₄ and N₂O emissions present at low levels from global perspective for both barns; the cold climate proved to be a major reason for the lower CH₄ emission from the layer barn. Considerable seasonal effect was observed only for N₂O emissions from the broiler barn, and for CH₄ and N₂O emissions from the layer barn, both with higher emissions in the mild and warm seasons than in the cold season. The big diurnal variations of CO₂ emissions for the layer barn demonstrated the uncertainty of the seasonal results by snapshot measurements and correction factors (from −20.9% to −22.5%) were obtained. Besides, the difference of CH₄ and N₂O concentrations and emissions as well as CO₂ concentrations between best-case (the first day after manure removal) and worst-case conditions (the last day before manure removal) was not obvious for the layer barn. Additionally, changes of temperature and ventilation rate were likely to have more impact on N₂O emission for the broiler barn and more impact on CH₄ emission for the layer barn than on the other two gas emissions, both with positive correlations.
Mostrar más [+] Menos [-]Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks Texto completo
2019
Liu, Juan | Li, Nuo | Zhang, Weilong | Wei, Xudong | Tsang, Daniel C.W. | Sun, Yubing | Luo, Xuwen | Bao, Zhi'an | Zheng, Chouyu | Wang, Jin | Xu, Guoliang | Hou, Liping | Chen, Yongheng | Feng, Yuexing
Thallium (Tl) is a trace metal of severe toxicity. Its health concerns via consumption of contaminated vegetables have often been overlooked or underestimated. This study was designed to gain insight into the actual level and distribution characteristics of Tl and metal (loid)s (Pb, Cd, Cr, Sb, Mn, Cu, Zn, Ni, and Co) in agricultural soils and common vegetables cultivated in different zones (upstream, midstream, and downstream) of a densely populated residential area in a typical mine city, which has been open-pit exploiting Tl-bearing pyrite minerals since 1960s. The results show that most of the agricultural soils exhibit contaminated levels of Tl, with Tl contents (upstream: 1.35–4.31 mg/kg, midstream: 2.43–5.19 mg/kg, and downstream: 0.65–2.33 mg/kg) mostly exceeding the maximum permissible level (MPL) for agricultural land use (1 mg/kg). Sequential extraction procedure indicates that even Tl is predominantly retained in the residual fraction, significant levels of Tl are still present in the geochemically mobile fractions. Besides, metals like Cu, Cd, Mn, and Co are mostly distributed in the labile fractions. Almost all metal (loid)s in edible parts of the vegetables exceed their corresponding MPL for consumption. The chronic daily intake (CDI) and hazard quotient (HQ) values calculated for inhabitants at different ages indicate non-negligible Tl risks via consumption of local vegetables, especially for children. Therefore, it is critical to establish effective measures for hazardous waste management and enforceable regulations in Tl-polluted area to mitigate potential severe impacts of Tl on human health through food chain.
Mostrar más [+] Menos [-]Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma) Texto completo
2019
Wang, Jun | Li, Yuejiao | Lü, Lin | Zheng, Mingyi | Zhang, Xiaona | Tian, Hua | Wang, Wei | Ru, Shaoguo
The ubiquity of microplastics in the world's ocean has aroused great concern. However, the ecological effects of microplastics at environmentally realistic concentrations are unclear. Here we showed that exposure of marine medaka (Oryzias melastigma) to environmentally relevant concentrations of 10 μm polystyrene microplastics for 60 days not only led to microplastic accumulation in the gill, intestine, and liver, but also caused oxidative stress and histological changes. Moreover, 2, 20, and 200 μg/L microplastics delayed gonad maturation and decreased the fecundity of female fish. Alterations of the hypothalamus-pituitary-gonadal (HPG) axis were investigated to reveal the underlying mechanisms, and gene transcription analysis showed that microplastic exposure had significantly negative regulatory effects in female HPG axis. Transcription of genes involved in the steroidogenesis pathway in females were also downregulated. This disruption resulted in decreased concentrations of 17β-estradiol (E₂) and testosterone (T) in female plasma. Furthermore, parental exposure to 20 μg/L microplastics postponed the incubation time and decreased the hatching rate, heart rate, and body length of the offspring. Overall, the present study demonstrated for the first time that environmentally relevant concentrations of microplastics had adverse effects on the reproduction of marine medaka and might pose a potential threat to marine fish populations.
Mostrar más [+] Menos [-]Characterization of M4 carbine rifle emissions with three ammunition types Texto completo
2019
Aurell, Johanna | Holder, Amara L. | Gullett, Brian K. | McNesby, Kevin | Weinstein, Jason P.
Muzzle emissions from firing an M4 carbine rifle in a semi-enclosed chamber were characterized for an array of compounds to provide quantitative data for future studies on potential inhalation exposure and rangeland contamination. Air emissions were characterized for particulate matter (PM) size distribution, composition, and morphology; carbon monoxide (CO); carbon dioxide (CO₂); energetics; metals; polycyclic aromatic hydrocarbons; and methane. Three types of ammunition were used: a “Legacy” (Vietnam-era) round, the common M855 round (no longer fielded), and its variant, an M855 round with added potassium (K)-based salts to reduce muzzle flash. Average CO concentrations up to 1500 ppm significantly exceeded CO₂ concentrations. Emitted particles were in the respirable size range with mass median diameters between 0.33 and 0.58 μm. PM emissions were highest from the M855 salt-added ammunition, likely due to incomplete secondary combustion in the muzzle blast caused by scavenging of combustion radicals by the K salt. Copper (Cu) had the highest emitted metal concentration for all three round formulations, likely originating from the Cu jacket on the bullet. Based on a mass balance analysis of each round's formulation, lead (Pb) was completely emitted for all three round types. This work demonstrated methods for characterizing emissions from gun firing which can distinguish between round-specific effects and can be used to initiate studies of inhalation risk and environmental deposition.
Mostrar más [+] Menos [-]Microplastics contamination in different trophic state lakes along the middle and lower reaches of Yangtze River Basin Texto completo
2019
Li, Lu | Geng, Shixiong | Wu, Chenxi | Kang, Song | Sun, Fuhong | Visvanathan, C. | Xie, Fazhi | Wang, Qilin
Microplastics can enter freshwater lakes through many sources. They can act as carriers to adsorb bacteria, virus, or pollutants (e.g., heavy metal and toxic organic compounds) that threaten human health through food chain. Microplastics can exist in surface water and sediments in freshwater lakes after they enter the lakes through discharge points. Wastewater discharge is the main cause of lake eutrophication and is the main emission source of microplastics. The correlation between lake trophic state and microplastic abundance has been rarely reported. This study investigated the microplastic contamination in surface water and sediments of 18 lakes along the middle and lower reaches of the Yangtze River Basin in the period of August–September 2018. The correlation between lake trophic state and microplastic abundance in surface water and sediments was investigated and discussed. The microplastic abundance in surface water was approximately two orders of magnitude lower than that in sediments in all 18 lakes. Hong Lake had the highest microplastic abundance in surface water sample, and Nantaizi Lake had the highest microplastic abundance in sediment sample. The dominant microplastic shape was fiber of 93.81% in surface water sample and 94.77% in sediment sample. Blue-colored microplastics were dominant in nearly all lakes in surface water sample (around 40%–60%) and sediment sample (around 60%–80%), followed by purple- and green-colored ones. The microplastics size <1 mm was dominant in surface water sample (around 40%–60%) and sediment sample (around 50%–80%). The dominant material was polypropylene in surface water sample (around 60%–80%) and sediment sample (around 40%–60%).
Mostrar más [+] Menos [-]