Refinar búsqueda
Resultados 2241-2250 de 4,936
The characterization and methane adsorption of Ag-, Cu-, Fe-, and H-exchanged chabazite-rich tuff from Turkey Texto completo
2019
Sakızcı, Meryem | Özer, Mehmet
In this study, a chabazite-rich tuff (CHA) from the Bala deposit of Ankara region (Turkey) and its modified forms (CuCHA, AgCHA, FeCHA, and HCHA samples) were investigated at 273 and 298 K using volumetric apparatus up to 100 kPa. The chabazite samples were characterized by using thermal analysis (TG-DTG-DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with detector X-ray energy dispersive (SEM-EDX), Fourier transform infrared (FT-IR), and N₂ adsorption methods. It was found that natural chabazite is composed of predominantly chabazite with small amounts of clinoptilolite and erionite. XRD showed that there are major structural changes to Fe- and H-exchanged chabazite samples. Capacity of chabazites for CH₄ ranged from 0.168 and 1.341 mmol/g. Among all the modified forms, it was observed that Ag form of chabazite zeolite had the greatest methane adsorption capacity at both temperatures.
Mostrar más [+] Menos [-]Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms Texto completo
2019
Liu, Fang | Fiencke, Claudia | Guo, Jianbin | Lyu, Tao | Dong, Renjie | Pfeiffer, Eva-Maria
The use of bioscrubber is attracting increasing attention for exhaust gas treatment in intensive pig farming. However, the challenge is to improve the methane (CH₄) removal efficiency as well as the possibility of pig house wastewater treatment. Three laboratory-scale bioscrubbers, each equipped with different recirculation water types, livestock wastewater (10-times-diluted pig house wastewater supernatant), a methanotroph growth medium (10-times-diluted), and tap water, were established to evaluate the performance of CH₄ removal and wastewater treatment. The results showed that enhanced CH₄ removal efficiency (25%) can be rapidly achieved with improved methanotrophic activity due to extra nutrient support from the wastewater. The majority of the CH₄ was removed in the middle to end part of the bioscrubbers, which indicated that CH₄ removal could be potentially optimised by extending the length of the reactor. Moreover, 52–86% of the ammonium (NH₄⁺-N), total organic carbon (TOC), and phosphate (PO₄³⁻-P) removal were simultaneously achieved with CH₄ removal in the present study. Based on these results, this study introduces a low-cost and simple-to-operate method to improve CH₄ removal and simultaneously treat pig farm wastewater in bioscrubbers.
Mostrar más [+] Menos [-]Toxicity and side effects of some insecticides applied in cotton fields on Apis mellifera Texto completo
2019
Abdel razik, Manal Abdel raouf Abdel mageed
Honeybee (Apis mellifera L.) provides not only bee products of immense value but also render invaluable free service as cross-pollination and propagation of several cultivated and wild species, thereby, maintaining biological diversity. Bee larvae and adults might be killed or suffer various sublethal effects when placed in contact with pollen and nectar contaminated with insecticides. The present work was conducted to investigate the toxicity of seven insecticides on laboratory using oral toxicity test and their side effects on A. mellifera in cotton fields. Results indicated that lambda-cyhalothrin was the most toxic-tested pesticide, recording the lowest LC₅₀ and LC₉₀ values at all tested periods and the lowest LT₅₀ and LT₉₀ at all tested concentrations, followed by abamectin, spinosad, chlorpyrifos, and emamectin benzoate. On the other side, dipel and pyridalyl recording the highest LC₅₀ and LC₉₀ at all tested periods and the highest LT₅₀ and LT₉₀ at all tested concentrations. As for the application of pesticides in cotton fields, the tested pesticides significantly increased the number of dead workers in comparison with control. The tested pesticides significantly decreased bee foraging activities, i.e., number of foraging workers, number of worker collecting nectar, number of worker gathering pollen grains, area of broad workers, and honey bee yields. Dipel and pyridalyl were the most safety pesticides on honey bee workers in laboratory and field, so it could be introduced as a component in IPM programs of cotton pests.
Mostrar más [+] Menos [-]Alleviative role of exogenously applied mannitol in maize cultivars differing in chromium stress tolerance Texto completo
2019
Habiba, Ume | Ali, Shafaqat | Rizwan, Muhammad | Ibrahim, Muhammad | Hussain, Afzal | Shahid, Muhammad Rizwan | Alamri, Saud A. | Alyemeni, Mohammed Nasser | Ahmad, Parvaiz
A pot experiment was performed to examine the role of foliar applied mannitol (M) in chromium (Cr) stress alleviation in different maize cultivars. Two maize cultivars, one tolerant (6103) and one sensitive (9108) to chromium stress, were grown in soil treated with three concentrations of Cr (0, 5, and 10 mg kg⁻¹) and three levels of mannitol (0, 50, and 100 mg L⁻¹). Chromium stress decreased the overall growth of plants by reducing the plant height, root/shoot dry weight, chlorophyll contents, and enzymatic activities, while exacerbated the severity of reactive oxygen species in both maize cultivars. Chromium-induced reduction in growth attributes of maize plants was relatively higher in sensitive cultivar than that of tolerant one. Uptake of Cr by the plants and its translocation from roots to shoots increased with increasing concentration in the soil. However, foliar application of mannitol significantly alleviated the Cr stress and improved growth, biomass, and photosynthetic pigments of maize plants. Mannitol also considerably reduced Cr contents in leaves and roots of both cultivars. Hence, it is concluded that mannitol can be helpful for crops grown on heavy metal, especially Cr, contaminated soils for remediation purpose.
Mostrar más [+] Menos [-]Performance evaluation of a photochemical model using different boundary conditions over the urban and industrialized metropolitan area of Vitória, Brazil Texto completo
2019
Pedruzzi, Rizzieri | Baek, Bok H. | Henderson, Barron H. | Aravanis, Nikolle | Pinto, Janaina A. | Araujo, Igor B. | Nascimento, Erick G. S. | Reis Junior, Neyval C. | Moreira, Davidson M. | de Almeida Albuquerque, Taciana Toledo
Metropolitan areas may suffer with increase of air pollution due to the growth of urbanization, transportation, and industrial sectors. The Metropolitan Area of Vitória (MAV) in Brazil is facing air pollution problems, especially because of the urbanization of past years and of having many industries inside the metropolitan area. Developing air quality system is crucial to understand the air pollution mechanism over these areas. However, having a good input dataset for applying on photochemical models is hard and requires quite of research. One input file for air quality modeling which can play a key role on results is the lateral boundary conditions (LBC). This study aimed to investigate the influence of LBC over CMAQ simulation for particulate matter and ozone over MAV by applying four different methods as LBC during August 2010. The first scenario (M1) is based on a fixed, time-independent boundary conditions with zero concentrations for all pollutants; the second scenario (M2) used a fixed, time-independent concentration values, with average values from local monitoring stations; the third CMAQ nesting scenario (M3) used the nested boundary conditions varying with time from a previous simulation with CMAQ over a larger modeling domain, centered on MAV; and finally, the fourth GEOS-Chem scenario (M4) used the boundary conditions varying with time from simulations of global model GEOS-Chem. All scenarios runs are based on the same meteorology conditions and pollutant emissions. The air quality simulations were made over a domain 61 × 79 km centered on coordinates − 20.25° S, − 40.28° W with a resolution of 1 km. The results were evaluated with the measured data from the local monitoring stations. Overall, significant differences on concentrations and number of chemical species between the LBC scenarios are shown across all LBC scenarios. The M3 and M4 dynamic LBC scenarios showed the best performances over ozone estimates while M1 and M2 had poor performance. Although no LBC scenarios do not seem to have a great influence on total PM₁₀ and PM₂.₅ concentrations, individual PM₂.₅ species like Na, NO₃⁻, and NH₄⁺concentrations are influenced by the dynamic LBC approach, since those hourly individual PM₂.₅ species from CMAQ nesting approach (M3) and GEOS-Chem model (M4) were used as an input to LBC.
Mostrar más [+] Menos [-]Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris Texto completo
2019
Saxena, Pallavi | Harish
Commercial usage of ZnO nanoparticles has increased recently due to its versatile applications, raising serious environmental concern because of its ultimate release of nanoparticles in aquatic ecosystem. Therefore, it is important to understand the impact of ZnO nanoparticle toxicity especially on algal flora, which is the primary producer in the aquatic food chain. In the current study, algal growth kinetics was assessed after the exposure of zinc oxide nanoparticles and its bulk counterpart to Coelastrella terrestris (Chlorophyceae). Zinc oxide nanoparticles were found to be more toxic (y = 34.673x, R² = − 0.101, 1 mg L⁻¹ nanoparticle (NP)) than bulk (y = 50.635x, R² = 0.173, 1 mg L⁻¹ bulk) by entrapping the algal cell surface. Higher toxicity may be due to oxidative stress within the algal cell as confirmed through biochemical analysis. Biochemical parameters revealed stressful physiological condition in the alga under nanoparticle exposure, as lactate dehydrogenase release (18.89 ± 0.2 NP; 13.67 ± 0.2 bulk), lipid peroxidation (0.9147 ± 1.2 NP; 0.7480 ± 0.8 bulk), and catalase activity (4.77 ± 0.1 NP; 3.32 ± 0.1 bulk) were found higher at 1 mg L⁻¹ in the case of nano-form. Surface adsorptions of nanoparticles were observed by SEM. Cell organelle damage, cell wall breakage, and cytoplasm shrinkage were found as responses under toxic condition through SEM and TEM. Toxicity was found to be influenced by dose concentration and exposure period. This study indicates that nano-form of ZnO is found to be more toxic than bulk form to freshwater alga.
Mostrar más [+] Menos [-]Natural and non-toxic products from Fabaceae Brazilian plants as a replacement for traditional antifouling biocides: an inhibition potential against initial biofouling Texto completo
2019
Agostini, Vanessa Ochi | Macedo, Alexandre José | Muxagata, Erik | da Silva, Márcia Vanusa | Pinho, Grasiela Lopes Leães
In this study, we screened for the antifouling activity of 15 species plant extracts from Brazilian the Brazilian Caatinga Fabaceae against the initial colonization of natural marine bacterial biofilm. We also investigated the potential toxicity of extracts against planktonic and benthic non-target organisms. Aqueous extracts of plants collected in the Caatinga biome (PE, Brazil) were prepared and tested at different concentration levels (0, 0.5, 1, 2, 4, and 8 mg mL⁻¹). Natural marine bacterial consortium was inoculated in multi-well plates and incubated with the different treatments for 48 h. The biofilm and planktonic bacterial density and biomass inhibition were evaluated along with biofilm biomass eradication. The extracts that showed the highest bacterial biofilm inhibition were evaluated for toxicity against microalgae and crustaceans. The biofilm and planktonic bacterial inhibition potential were evaluated through flow cytometry and spectrophotometry. The selected treatments were evaluated for their toxicity using the microalgae Chaetoceros calcitrans, the copepod Nitokra sp., and the brine shrimp Artemia salina as bioindicators. Our work demonstrates the biotechnological potential of Fabaceae plant compounds as a safe antifouling alternative. Anadenanthera colubrina var. cebil fruits and Apuleia leiocarpa leaf extracts showed antibiofilm activity (≥ 80%), while Myroxylon peruiferum and Dioclea grandiflora leaf extracts showed antibiotic activity. These extracts were safe to planktonic and benthic non-target organisms. The results of this study point to potential substitutes to highly toxic antifouling paints and shed light on the prospect of a yet to be explored biome for more sustainable alternatives in biofouling research.
Mostrar más [+] Menos [-]Nitrogen Biogeochemistry of Anaerobic Biodegradation of Naphthalene Texto completo
2019
Zhang, Menghuan | Zhang, Fengjun | Ma, Zhe | Wan, Yuyu
A mixed community of bacteria was enriched from groundwater contaminated with naphthalene as the sole carbon source. Based on the results of 16S rRNA sequences, Acinetobacter and Pseudomonas were the predominant species in the naphthalene-enriched culture. Different initial forms of nitrogen, including nitrate, nitrite, and ammonium, were beneficial to naphthalene degradation, which was considered second-order kinetics and naphthalene could be decreased by 94.68% during the incubation period of 30 days with an initial naphthalene concentration of 0.5 mg/L. These clear biogeochemical denitrification signals, the consumption and accumulation of nitrate, nitrite, and ammonium during the incubation period, suggested that naphthalene degradation may be coupled with denitrification and DNRA metabolism. Nitrate and nitrite were reduced mainly as electron acceptors, and ammonium was utilized by microorganisms as an important inorganic nutrient for their growth and reproduction, which promoted the degradation of naphthalene. The results of this study contributed to the removal pathway and transformational mechanism of nitrogen and reveal their involvement in the anaerobic biodegradation of naphthalene.
Mostrar más [+] Menos [-]Analysis of the Presence of Toxic Metals in Yerba Mate Samples: a Case Study from South Brazil Texto completo
2019
Valduga, Alice Teresa | Gonçalves, Itamar Luís | Magri, Ederlan
The presence of toxic metals in soil enables them to be absorbed by plants. The RDC 42/2013 published by Brazilian Health Regulatory Agency (ANVISA) defines the maximum values of cadmium (0.4 mg kg⁻¹) and lead (0.6 mg kg⁻¹) in yerba mate commercialized in Common Market of the South (Mercosul). This work is a retrospective study that aimed to evaluate cadmium and lead levels in processed yerba mate and in natura leaves in Southern Brazil. The cadmium and lead concentrations in 370 processed yerba mate and 122 in natura leave samples obtained in Southern Brazil were analyzed. In 47.56% of the processed samples, the levels of cadmium and/or lead were found to be above the authorized levels. The cadmium levels found in the processed yerba mate were 0.37 ± 0.19 mg kg⁻¹, and the corresponding values for lead were 0.34 ± 0.21 mg kg⁻¹. Values above the authorized levels were also found in the non-processed leaves. Studies are required to determine whether these levels are natural or represent contamination.
Mostrar más [+] Menos [-]Dispersion of Gravel Road Fine-Fractions as Influenced by Oil-Well Produced Water and Simulated Solutions of Various SAR, EC, and Ca/Mg Ratios Texto completo
2019
Graber, Kayla | Hargiss, Christina L. M. | DeSutter, Thomas | He, Yangbo | Norland, Jack E.
In the northern Great Plains, a potential road dust abatement is the application of oil-well produced water, also known as “brine.” However, little is known about the effectiveness of brine or its potential impacts on dispersion of road materials and the creation of dusts. This study aimed to investigate how sodium adsorption ratios (SAR), electrical conductivity (EC), and Ca/Mg ratios of simulated and non-simulated brine influenced dispersive reactions of three mineralogically different gravel road fine fractions. Ca/Mg ratios had little to no significant influence on the outcome of dispersion. Irrespective of the SAR or clay mineralogy, a threshold EC of 4 dS m⁻¹ was sufficient to control road fine fraction dispersion. Actual oil-well produced water effect on dispersion followed the same order as that treated by simulated solution and the dispersion value can be well-predicted from EC. This information is useful to managers, regulators, scientists, and industry professionals considering the use of brine as a road dust control abatement.
Mostrar más [+] Menos [-]