Refinar búsqueda
Resultados 231-240 de 560
Novel Bacterial Consortium for Mitigation of Odor and Enhance Compost Maturation Rate of Municipal Solid Waste: A Step Toward a Greener Economy
2024
P.A.K.C. Wijerathna, K.P.P. Udayagee, F.S. Idroos and Pathmalal M. Manage
Composting is an integral component of sustainable Municipal Solid Waste (MSW) management within the circular bio-economy platform. However, it faces challenges due to malodorous emissions that impact environmental and societal equilibrium. The present study aims to minimize odorous emissions and expedite compost maturation using a novel, efficient microbial consortium. Bacteria sourced from open dump sites in Sri Lanka were carefully screened based on concurrent enzyme production. Five developed consortia were tested for their performance in reducing malodors during the composting process of MSW. Consortium No. 5 (C5), comprised of Bacillus haynesii, Bacillus amyloliquefaciens, and Bacillus safensis, demonstrated outstanding performance with a significant (p < 0.05) reduction in odorous emissions. Additionally, consortium C5 exhibited impressive control over gas emissions, maintaining VOC, CH4, NH3, and H2S concentrations within ranges of 0.5-6 ppm, 0.5-0.8 ppm, 0.3-0.5 ppm, and 0.5-0.6 ppm, respectively, compared to control concentrations of 4.5-10.2 ppm, 0.5-5.5 ppm, 0.3-5.5 ppm, and 0.5-6.4 ppm, respectively. Additionally, comprehensive Electronic nose (E-nose) analysis substantiated C5’s efficiency in attenuating Methane-Aliphatic compounds, Sulfur and Aromatic compounds, along with low-polarity aromatic and alkane compounds, all with statistical significance (p < 0.05). Further, the developed consortium could reduce the composting time from 110 ± 10 days to 17 ± 3 days, offering a sustainable solution for global MSW management.
Mostrar más [+] Menos [-]Bioaccumulation of Lead (Pb) and Cadmium (Cd) in Padina Australis Hauck at Palang Beach, Tuban, East Java, Indonesia
2024
F. Rachmadiarti, Winarsih, H. Fitrihidajati, T. Purnomo, S. Kuntjoro, F. A. Nafidiastri, R. Yolanda, R. Ambarwati, D. Anggorowati, W. Budijastuti, U. Faizah, D. Putriarti and N. F. Rosyidah
Waters polluted with Pb and Cd have a negative impact on the environment. Padina australis grows abundantly on the coast of Palang Subdistrict, Tuban, and the local community consumes it. Macroalgae as food must be free of metal contamination. This study aims to determine the impact of Pb and Cd bioaccumulation on P. australis. Sampling was conducted at two stations, including Station I, Panyuran Village, and Station II, Glodog Village. Analysis of Pb and Cd metal levels using Atomic Absorption Spectrophotometry (AAS). Analysis of protein content using the Kjeldahl method. The data obtained was analyzed with Principle Component Analysis (PCA). The results of the analysis of Pb and Cd levels in P. australis at station II, which are 0.200 ± 0.028 and 0.021 ± 0.004 mg.kg-1 higher than station I, which are 0.194 ± 0.015 and 0.010 ± 0.001 mg.kg-1. The protein content of P. australis at station I was 4.713 ± 0.508 mg.kg-1, and at station II was 5.900 ± 0.928 mg.kg-1. This shows that P. australis is still considered good for consumption even though it has been polluted and contains Pb and Cd metals. P. australis can tolerate and does not experience severe physiological damage so it has the potential as a heavy metal phytoremediator.
Mostrar más [+] Menos [-]Potential of Heavy Metals and Microplastics Contamination in River Mpanga, Fort Portal, Kabarole District, Uganda
2024
C. Nyakoojo, W. Kabiswa, E. Najjuma, P. Matovu and H. Ocaya
Anthropogenic environmental pollution is a major development challenge in Ugandan rivers and lakes, the key drivers being industrialization, agriculture, and urbanization. The aim of the study was to assess the potential of heavy metal and microplastic contamination in River Mpanga, Fort Portal, Uganda. Triplicate water and sediment samples were collected from three sampling sites, preserved, and analyzed at the Chemistry Department, Makerere University for heavy metals, while microplastics analysis was conducted at NaFIRRI, Jinja. Sediment heavy metal contamination was assessed from the geoaccumulation index, while microplastic characterization and quantification were determined from stereomicroscopy and morphological features. Arsenic was the most prevalent metal with a mean concentration of 13.2 ppm thus higher than permissible maximum limits of WHO. The mean concentrations (ppm) of copper, lead, and cadmium were 0.01, 0.01, and 0.001 respectively, and below the permissible maximum. Sediment samples revealed very strong arsenic contamination, strong contamination for copper, moderate to strong contamination for lead, and a potential lack of contamination for cadmium. The higher concentrations of the heavy metals in the sediments compared to water could be attributed to bioaccumulation, as evidenced by the high geoaccumulation values. Microplastics occurred throughout the river and included fragments, filaments, film, pellets, form, and fibers. The presence of heavy metals and microplastics was attributed to anthropogenic activities within the river vicinity, which discharged heavy metal-laden waste into River Mpanga. High arsenic concentrations and sediment accumulation of contaminants pose serious potential public health threats to the local communities.
Mostrar más [+] Menos [-]GIS-Based Mapping of the Water Quality and Geochemical Assessment of the Ionic Behavior in the Groundwater Aquifers of Middle Ganga Basin, Patna, India
2024
Mohammad Masroor Zafar, Mohammed Aasif Sulaiman and Anupma Kumari
The study implemented Geographic Information System (GIS) techniques and multivariate hydrogeochemical analysis to evaluate the spatial-temporal and seasonal variation in the groundwater quality of Patna, India. For this purpose, sixty groundwater samples were collected and analyzed for major anions and cations during the pre-monsoon, monsoon, and post-monsoon seasons of 2019-2020. The physicochemical parameters such as pH, EC (Electrical Conductivity), TDS (Total Dissolved Solids), TH (Total Hardness), Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42- were considered to evaluate the water quality index. The result revealed degradation in groundwater quality from pre-monsoon (49.21) to post-monsoon (74.48). EC, TDS, TH, Mg2+, Na+, Ca2+, K+, and HCO3- ions were found accountable for high WQI values at various sampling sites during different seasons. Spatial maps showed that 45 % of the sampling stations exhibited poor quality in all three seasons, where the eastern part of the studied region was revealed to be the most affected area. The application of multivariate statistical methods and hydrogeochemical investigation has clearly defined the dominant role of the weathering process, and reverse ion exchange mechanism in controlling the aquifer’s ionic chemistry. Moreover, poor seepage system, and waste leachate from the surface have been found as the main cause of high levels of Na+, K+, and Cl- in the eastern part of Patna.
Mostrar más [+] Menos [-]Assessment of Microplastic Pollution in Fresh Fish and Pindang Fish and its Potential Health Hazards in Coastal Communities of Banyuwangi Regency, Indonesia
2024
Lilis Sulistyorini, Novi Dian Arfiani, Muhammad Addin Rizaldi, Leka Lutpiatina and Nurul Izzah Abdul Samad
This study aimed to analyze the microplastic contamination of fresh and pindang fish and its health impact on the coast of Muncar, Banyuwangi Regency, Indonesia. In this study, a total of 115 respondents participated, providing questionnaire data on their fish consumption habits and health problems. Subsequently, spearman’s correlation coefficient, a non-parametric statistical test, was used to analyze the questionnaire data. This study also included 100 samples of marine fish, consisting of 89 fresh fish and 11 pindang fish from various types of marine species. The content of microplastic polymers detected through FTIR (Fourier-Transform Infrared Spectroscopy) was around 3-5 microplastic polymers/fish samples, and the most dominant were Polyethylene, Polyester, Polycaprolactam (Nylon 6) and Polyamide. This study showed that 94 percent of fish samples contained microplastics and only 6 percent of samples did not contain microplastics. The intensity of pindang fish consumption was positively correlated with respondents’ health symptoms and problems. Subsequently, implementing effective waste management systems and educational programs in the coastal areas is crucial in reducing the pollution of seawater resulting from inadequate waste disposal practices.
Mostrar más [+] Menos [-]Green Nanotech: A Review of Carbon-Based Nanomaterials for Tackling Environmental Pollution Challenges
2024
Rameeja Shaik, Buddhadev Ghosh, Harish Chandra Barman, Arijit Rout and Pratap Kumar Padhy
In recent times, nanotechnology has experienced widespread acclaim across diverse sectors, including but not limited to tissue engineering, drug delivery systems, biosensors, and the mitigation and monitoring of environmental pollutants. The unique arrangement of carbon atoms in sp3 configurations within carbon nanomaterials endows them with exceptional physical, mechanical, and chemical characteristics, driving them to the forefront of materials research. Their appeal lies in their efficacy as superior adsorbents and their exceptional thermal resistance, making them versatile in various applications. The present review extensively explores a range of carbon-based nanomaterials, delving into their synthesis methods and examining their multifaceted applications in addressing environmental pollutants. It is crucial to emphasize that the popularity of carbon-based nanomaterials arises from their potential to serve as superior adsorbents, coupled with their outstanding thermal resistance properties. These attributes contribute to their applicability in diverse environmental contexts. Looking ahead, carbon-based nanomaterials are poised to emerge as environmentally friendly and cost-effective materials, representing promising and potential avenues for the advancement of sustainable technology.
Mostrar más [+] Menos [-]Assessing Heavy Metal Accumulation in Urban Plants: Implications for Environmental Health and Traffic-Related Pollution in Al-Diwaniyah City, Iraq
2024
Luma Abdalalah Sagban Alabadi, Wafaa Sahib Abbood Alawsy and Dunya A. AL-jibury
This study aimed to compare the ability of five plant species, including (Conocarpus erectus, Acacia sensu lato (s.l.), Melaleuca viminalis, Dodonaea viscosa and Lantana camara) to absorb and accumulate heavy elements in their tissues, which were grown in the central islands in the city of Diwaniyah. This included areas of street in front of the medical college, Umm Al Khail First Street, Umm Al-Khail Street, near Abbas Attiwi Bridge, Al-Adly Street in the Euphrates District, and Clock Field Street, respectively. Results showed that soil samples S1 and S3 were contaminated by Pb, and the rest of the sites were contaminated with nickel only. This indicates through the table findings a rise in these heavy metals’ concentrations with a rise in traffic momentum. Thus, the Pb concentrations in the growing plants’ shoot parts with respect to this research had surpassed the allowed critical limit of 5.00 mg.kg-1 dry matter, in which the highest value was recorded at the site with respect to S3 as well as S2. Meanwhile, the findings indicate that Cd concentrations in S3 and S1 had increased and exceeded the allowable limit of 0.20 mg.kg-1 dry matter. In the meantime, the nickel concentrations were within the permissible limits of 67.90 mg.kg-1 dry matter. The Zn concentration exceeded the permitted limits of 60.00 mg.kg-1 dry matter except for plants (Acacia s.l. and Lantana camara) in sites S5 and S2. The results confirmed that the values of Heavy Metals Bioaccumulation Coefficient (BAC) for most of the study elements had recorded the highest value in the Dodonaea plant for Zn, Cd, and Pb, except for Ni. It was more accumulated in the Melaleuca viminalis plant, which indicates the superiority of the Dodonaea plant in accumulating Pb, Cd, and Zn over the rest of the study plants, as they took the following order: Lantana camara < Acacia s.l. < Conocarpus erectus < Melaleuca viminalis < Dodonaea viscosa. The best plants accumulated nickel in the following order: Acacia s.l. < Lantana camara < Conocarpus erectus < Dodonaea viscosa < Melaleuca viminalis.
Mostrar más [+] Menos [-]Combined Application of Biochar and Silicon Fertilizer for Improved Soil Properties and Maize Growth
2024
Muhammad Wasil Bin Abu Bakar, M. K. Uddin, Susilawati Kasim, Syaharudin Zaibon, S. M. Shamsuzzaman, A. N. A. Haque and A. Reza
Biochar can be a good soil amendment to reduce the soil pH, increase crop growth rate, and improve the efficient use of fertilizer. Other than that, silicon fertilizer also would promote photosynthetic ability on plant development that would help to produce high yield. In this work, a series of experiments was conducted to observe the effect of rice husk biochar and silicon fertilizer on the maize growth rate and soil pH. A 45-day pot experiment in the greenhouse with three replicates of 9 experimental treatment combinations of RHB at two rates (5 and 2.5 t.ha-1) with silicon fertilizer at three rates (125%, 100%, 75%), sole biochar (10 t.ha-1), sole silicon fertilizer (100%) and control (NPK) to observe the best rate and combination to improve growth rate and change in soil chemical in acid soil. The result showed that the co-application of sole biochar and biochar with Silicon significantly improved growth development, increased photosynthesis rate, altered soil pH, and reduced Fe concentration compared to control. The plant height increased 88.35% from T4 (5 t.ha-1 RHB + 100% Si) compared to the control and the conductance was higher in T4 (0.53) followed by T8 (0.438) while T1 (0.071) recorded the lowest conductance. The shoot fresh weight was higher in T4 (127.83 g) followed by T8 (57.14 g). However, the weight increased by 343.7% at T4 followed by T8 (2.5 t.ha-1 RHB + 75% Si) at 98.33%. The highest pH increment of 1.24 units (T1 = 5.53, T4 = 6.77) of soil pH was noted from T4 (5 t.ha-1 RHB + 100% Si) compared to control (NPK), and the highest total Fe in soil was observed from T1 (442.30 mg.kg-1). The current study results showed that T4 (50% RHB + 100% Silicon) was the best treatment over the other rates of RHB and silicon increased plant height, photosynthetic rate, and biomass.
Mostrar más [+] Menos [-]Nitrogen Nutrition-Induced Changes in Macronutrient Content and Their Indirect Effect on N-Metabolism Via an Impact on Key N-Assimilating Enzymes in Bread Wheat (Triticum aestivum L.)
2024
Vandna, Vasundhara Sharma, Kalidindi Usha, Dalveer Singh, Ranjan Gupta, V. K. Gupta and Bhupinder Singh
Judicious application of nitrogen (N) fertilizers in crop production is critical for reducing the nitrate pollution of groundwater and greenhouse gas emissions. It is, thus, important to improve the nitrogen use efficiency under the reduced application of nitrogen. A genotypic variation in N-uptake and N-use efficiency particularly under low N-input conditions exists across crops that can be deciphered and exploited for environmentally sustainable farming without any significant penalty of yield and quality. The present research conducted under the nutrient solution culture aimed to explore the inherent variability in the growth response of ten genetically diverse wheat varieties to low fertilizer N-application (N-, 10 μM N) in comparison to N sufficient control (N+, 8.5 mM N) viz., a viz., the activity of various key N-assimilating enzymes and to delineate the indirect effect of low N on uptake and partitioning of other major macronutrients viz., P, K, S, which may indirectly regulate the N-use efficiency. A notable increase in sulfur, potassium, and phosphorus content was observed under nitrogen-deficient conditions. Varieties such as Carnamah and HD 2824 exhibit a significant increase in shoot phosphorus content, emphasizing their potential to optimize phosphorus acquisition and utilization efficiency under nutrient-limited conditions. The findings highlight the complex interplay between nutrient availability and plant responses, showcasing varietal-specific adaptations to nitrogen limitations.
Mostrar más [+] Menos [-]Energy Intervention Model in Public Education Institutions that Contribute to Sustainable Development
2024
J. Velez-Ramos, D. Mayorga and F. Gonzalez
Sustainable development is a global policy that requires the collective effort of the actors present in each territory. In this sense, an energy renewal intervention model is presented at the Juan XXIII Educational Institution in the city of Monteria, Córdoba, Colombia, which results from alliances between international, national, and regional actors, becoming a reference that could serve as a basis. To be replicated in other institutions with characteristics similar to those described in this case. The model generally describes the entire process carried out in the intervention and focuses on the benefits generated for the educational community. Among the main results, the increase in thermal, lighting, and acoustic comfort of the educational community stands out, according to a survey and semi-structured interviews carried out. A fact that could be attributed to the perception of increased comfort in the community is the increase in the student population in 2022, going from 1,478 in 2019 to 1,909 in 2022, with a growth of approximately 29%. Energy renovation also resulted in the improvement of the indoor climate of the classrooms (from 35°C to 27°C), the improvement in the physical infrastructure of the institution, the integration of photovoltaic solar energy, and the subsequent reduction of energy cost.
Mostrar más [+] Menos [-]