Refinar búsqueda
Resultados 2311-2320 de 2,500
Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material
2014
Sapiña, M. | Jimenez-Relinque, E. | Castellote, M.
This paper explores the potential of a hazardous waste of difficult management, electric arc furnace dust (EAFD), as photocatalytic material. Starting from a real waste coming from a Spanish steel factory, chemical, mineralogical, and optical characterizations have been carried out. Direct trials on EAFD and mortar containing this waste have been performed to evaluate its potential as photocatalyst itself and within a cementitious material. The analysis of photocatalytic properties has been done by two different methods: degradation of NO ₓ and degradation of rhodamine (RhB). As a result, it can be said that EAFD exhibited photocatalytic activity for both configurations with UV and visible light, having the mortar enhanced photocatalytic activity for NO ₓ with respect to the EAFD itself. Additionally, in direct trials on the EAFD, it has been able to degrade RhB even in the dark, which has been attributed to transfer of electrons between the adsorbed RhB and the conduction band of some oxides in the dust.
Mostrar más [+] Menos [-]Fate of para-toluenesulfonamide (p-TSA) in groundwater under anoxic conditions: modelling results from a field site in Berlin (Germany)
2014
This article reports on a field modelling study to investigate the processes controlling the plume evolution of para-toluenesulfonamide (p-TSA) in anoxic groundwater in Berlin, Germany. The organic contaminant p-TSA originates from the industrial production process of plasticisers, pesticides, antiseptics and drugs and is of general environmental concern for urban water management. Previous laboratory studies revealed that p-TSA is degradable under oxic conditions, whereas it appears to behave conservatively in the absence of oxygen (O₂). p-TSA is ubiquitous in the aquatic environment of Berlin and present in high concentrations (up to 38 μg L⁻¹) in an anoxic aquifer downgradient of a former sewage farm, where groundwater is partly used for drinking water production. To obtain refined knowledge of p-TSA transport and degradation in an aquifer at field scale, measurements of p-TSA were carried out at 11 locations (at different depths) between 2005 and 2010. Comparison of chloride (Cl⁻) and p-TSA field data showed that p-TSA has been retarded in the same manner as Cl⁻. To verify the transport behaviour under field conditions, a two-dimensional transport model was setup, applying the dual-domain mass transfer approach in the model sector corresponding to an area of high aquifer heterogeneity. The distribution of Cl⁻and p-TSA concentrations from the site was reproduced well, confirming that both compounds behave conservatively and are subjected to retardation due to back diffusion from water stagnant zones. Predictive simulations showed that without any remediation measures, the groundwater quality near the drinking water well galleries will be affected by high p-TSA loads for about a hundred years.
Mostrar más [+] Menos [-]Degradation of industrial surfactants by photocatalysis combined with ozonation
2014
Zsilák, Zoltán | Fónagy, Orsolya | Szabó-Bárdos, Erzsébet | Horvath, Otto | Horváth, Krisztián | Hajós, Péter
The efficiency of titanium dioxide-mediated photocatalytic degradation of pollutants can be enhanced by combination with another advanced oxidation procedure such as ozonation. Mineralization of hydroxy- and dihydroxybenzenesulfonate based on these methods, both individually and combined, was investigated by monitoring the total organic carbon content, sulfate concentration, pH, high-performance liquid chromatography as well as the absorption spectral changes. The mineralization efficiency of the combined procedure significantly exceeded the sum of those of the individual techniques. The comparison of the disappearance of the starting material and the formation of the sulfate ions indicates that desulfonation is not the primary step of the degradation. Moreover, in the case of the combined method, ring cleavage, and thus, partial mineralization can occur without desulfonation. Efficient degradation of other, widely used industrial surfactants, such as alkylbenzene sulfonates and alkyl ether sulfates, was also achieved by heterogeneous photocatalysis combined with ozonation, offering an applicable method for the removal of these pollutants.
Mostrar más [+] Menos [-]A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues
2014
Pati, Anupama | Chaudhary, Rubina | Subramani, Saravanabhavan
Raw hide/skins come to the tanners as a by-product of meat industry which is converted into value-added leather as product for fashion market. Leather manufacturing is a chemical process of natural biological matrix. It employs a huge quantity of water and inorganic and organic chemicals for processing and thereby discharges solid and liquid wastes into the environment. One of the potential solid wastes generated from leather industry is chrome-tanned leather shavings (CTLSs), and its disposal is increasingly becoming a huge challenge on disposal to tanners due to presence of heavy metal chromium. Hence, finding a sustainable solution to the CTLS disposal problem is a prime challenge for global tanners and researchers. This paper aims to the deeper review of various disposal methods on CTLS such as protein, chromium, and energy recovery processes and its utilization methodologies. Sustainable technologies have been developed to overcome CTLS solid wastes emanating from leather processing operations. Further, this review paper brings a broader classification of developed methodologies for treatment of CTLSs.
Mostrar más [+] Menos [-]Bio-beads with immobilized anaerobic bacteria, zero-valent iron, and active carbon for the removal of trichloroethane from groundwater
2014
Zhou, Ya-Zhen | Yang, Jie | Wang, Xiao-Li | Pan, Yue-Qing | Li, Hui | Zhou, Dong | Liu, Yong-Di | Wang, Ping | Gu, J.-D. | Lu, Qiang | Qiu, Yue-Feng | Lin, Kuang-Fei
Chlorinated hydrocarbons are the most common organic pollutants in groundwater systems worldwide. In this study, we developed bio-beads with immobilized anaerobic bacteria, zero-valent iron (ZVI), and activated carbon (AC) powder and evaluated their efficacy in removing 1,1,1-trichloroethane (TCA) from groundwater. Bio-beads were produced by polyvinyl alcohol, alginate, and AC powder. We found that the concentration of AC powder used significantly affected the mechanical properties of immobilized bio-beads and that 1.0 % (w/v) was the optimal concentration. The bio-beads effectively degraded TCA (160 mg L⁻¹) in the anaerobic medium and could be reused up to six times. The TCA degradation rate of bio-beads was 1.5 and 2.3 times greater, respectively, than ZVI + AC treatment or microbes + AC treatment. Measuring FeS produced by microbial reactions indicated that TCA removal occurred via FeS-catalyzed dechlorination. Analysis of clonal libraries derived from bio-beads demonstrated that the dominant species in the community were Betaproteobacteria and Gammaproteobacteria, which may contribute to the long-term stability of ZVI reactivity during TCA dechlorination. This study shows that the combined use of immobilized anaerobic bacteria, ZVI, and AC in bio-beads is effective and practical for TCA dechlorination and suggests they may be applicable towards developing a groundwater treatment system for the removal of TCA.
Mostrar más [+] Menos [-]Characterisation of perfluorooctane sulfonate (PFOS) in a terrestrial ecosystem near a fluorochemical plant in Flanders, Belgium
2014
Bioaccumulation of perfluorooctane sulfonate (PFOS) in a restricted terrestrial food chain was investigated with the omnivorous wood mouse (Apodemus sylvaticus) on top of the studied food chain. The levels detected are very high compared with literature as a result of the presence of fluorochemical plant in the immediate vicinity of the study area. Soil, surface water, fruits of European elder and common blackberry, invertebrates, bank vole and wood mouse were collected at two sites, e.g. Blokkersdijk, adjacent to the fluorochemical plant, and Galgenweel, a reference site 2 km further away. In wood mouse, the highest PFOS concentrations were found in the liver followed by the pancreas, lungs and kidneys, with the spleen having the lowest levels. In the liver, the concentrations ranged from 787 to 22,355 ng/g ww at Blokkersdijk and these were significantly correlated with those detected in the kidneys (13.7–4,226 ng/g ww). If current results are compared to the findings of a previous study conducted in 2002 at the same sites, a significant decrease of PFOS in livers of wood mouse is observed. To the best of our knowledge, so far no studies reported levels of PFOS in terrestrial invertebrates under field conditions. At Blokkersdijk, PFOS was detected in all invertebrate species ranging from 28 to 9,000 ng/g. Soil and water were also contaminated with levels of respectively 68 ng/g and 22 ng/L. Biota-to-soil accumulation factors ranged from 0.11 to 68 for earthworms. Biomagnification factors (BMFs) of liver wood mouse/berries were as high as 302. BMFs for invertebrates were remarkably lower (up to 2).
Mostrar más [+] Menos [-]Bioremediation potential of microorganisms from a sandy beach affected by a major oil spill
2014
Reis, Izabela | Almeida, C. Marisa R. | Magalhães, Catarina M. | Cochofel, Jaqueline | Guedes, Paula | Basto, M. Clara P. | Bordalo, Adriano A. | Mucha, Ana P.
The aim of this work was to evaluate the bioremediation potential of microorganisms from intertidal sediments of a sandy beach affected by a major oil spill 7 years before and subject to chronic petroleum contamination since then. For that, the response of microorganisms to a new oil contamination was assessed in terms of community structure, abundance, and capacity to degrade hydrocarbons. Experiments were carried out under laboratory-controlled conditions by mixing sediment with crude oil with three different nitrogen supplementations in 50 ml serum bottles under constant shake for 15 days. Autochthonous microorganisms were able to respond to the new oil contamination by increasing their abundance (quantified by DAPI) and changing the community structure (evaluated by DGGE). This response was particularly clear for some specific bacterial groups such as Pseudomonas, Actinomycetales, and Betaproteobacteria. These communities presented an important potential for hydrocarbon degradation (up to 85 % for TPHs and 70 % for total PAHs), being the biodegradation stimulated by addition of an appropriate amount of nitrogen.
Mostrar más [+] Menos [-]Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review
2014
Yu, Xinmin | Zhou, Minghua | Hu, Youshuang | Groenen Serrano, K. | Yu, Fangke
Boron-doped diamond (BDD) is playing an important role in environmental electrochemistry and has been successfully applied to the degradation of various bio-refractory organic pollutants. However, the review concerning recent progress in this research area is still very limited. This mini-review updated recent advances on the removal of three kinds of bio-refractory wastewaters including pharmaceuticals, pesticides, and dyes using BDD electrode. It summarized the important parameters in three electrochemical oxidation processes, i.e., anodic oxidation (AO), electro-Fenton (EF), and photoelectro-Fenton (PEF) and compared their different degradation mechanisms and behaviors. As an attractive improvement of PEF, solar photoelectro-Fenton using sunlight as UV/vis source presented cost-effectiveness, in which the energy consumption for enrofloxacin removal was 0.246 kWh/(g TOC), which was much lower than that of 0.743 and 0.467 kWh/(g TOC) by AO and EF under similar conditions. Finally the existing problems and future prospects in research were suggested.
Mostrar más [+] Menos [-]Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification
2014
Asadi, Somayeh | Hassan, Marwa | Nadiri, Ataallah | Dylla, Heather
In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOₓconcentration in the air as a function of traffic count (Tᵣ) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOₓmeasurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.
Mostrar más [+] Menos [-]Trace elements in sediments, blue spotted tilapia Oreochromis leucostictus (Trewavas, 1933) and its parasite Contracaecum multipapillatum from Lake Naivasha, Kenya, including a comprehensive health risk analysis
2014
Otachi, Elick O. | Körner, Wilfried | Avenant-Oldewage, Annemariè | Fellner-Frank, Christine | Jirsa, Franz
This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.
Mostrar más [+] Menos [-]