Refinar búsqueda
Resultados 2461-2470 de 2,513
Field controlled experiments on the physiological responses of maize (Zea mays L.) leaves to low-level air and soil mercury exposures Texto completo
2014
Niu, Zhenchuan | Zhang, Xiaoshan | Wang, Sen | Zeng, Ming | Wang, Zhangwei | Zhang, Yi | Ci, Zhijia
Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively. Low-level air Hg exposures (<50 ng m⁻³) had little effects on the gas exchange parameters of maize leaves during most of the daytime (p > 0.05). However, both the net photosynthesis rate and carboxylation efficiency of maize leaves exposed to 50 ng m⁻³air Hg were significantly lower than those exposed to 2 ng m⁻³air Hg in late morning (p < 0.05). Additionally, the Hg, proline, and MDA concentrations in maize leaves exposed to 20 and 50 ng m⁻³air Hg were significantly higher than those exposed to 2 ng m⁻³air Hg (p < 0.05). These results indicated that the increase in airborne Hg potentially damaged functional photosynthetic apparatus in plant leaves, inducing free proline accumulation and membrane lipid peroxidation. Due to minor translocation of soil Hg to the leaves, low-level soil Hg exposures (<1,000 ng g⁻¹) had no significant influences on the gas exchange parameters, or the Hg, proline, and MDA concentrations in maize leaves (p > 0.05). Compared to soil Hg, airborne Hg easily caused physiological stress to plant leaves. The effects of increasing atmospheric Hg concentration on plant physiology should be of concern.
Mostrar más [+] Menos [-]Investigation of novel material for effective photodegradation of bezafibrate in aqueous samples Texto completo
2014
Regulska, Elżbieta | Karpińska, Joanna
A novel composite with an enhanced photocatalytic activity was prepared and applied to study the removal of bezafibrate (BZF), a hypolypemic pharmaceutical, from an aqueous environment. For the enhancement of titanium dioxide photoactivity a fullerene derivative, 2-(ferrocenyl) fulleropyrrolidine (FcC₆₀), was synthesized and applied. Obtained composite was found to show a higher catalytic activity than pristine TiO₂. Therefore, high hopes are set in composites that are based on carbonaceous nanomaterials and TiO₂as a new efficient photocatalysts.
Mostrar más [+] Menos [-]Mercury (Hg) in fish consumed by the local population of the Jaguaribe River lower basin, Northeast Brazil Texto completo
2014
Costa, B. G. B. | Lacerda, L. D.
The knowledge of Hg concentrations in fish is of considerable interest since these organisms are a major source of protein to coastal human populations and fishing communities. The main source of human exposure to Hg contamination occurs through the consumption of fish. In this paper, we compare Hg concentration in 13 fish species from Jaguaribe River lower basin and an adjacent coastal region in the northeastern coast of Brazil. We sampled fish from three stretches of the river: fluvial, estuarine, and marine regions. We tested the hypothesis that Hg concentration in muscle tissue vary according to species, location, and trophic level. Significant differences were observed among species and trophic level, but these could not be observed among the regions studied. As expected, the highest concentrations were observed in carnivorous fish (5.6–107.5; 26.9 ± 18.8 ng g⁻¹). Hg concentrations observed in this study are similar to those observed in regions of low environmental contamination. We estimated Hg intake to vary between 0.02 and 0.22 ng Hg kg body weight⁻¹ week⁻¹, for the average body weight of 56.7 kg, which was considered as low exposure and therefore, a low risk to consumers of fish from the regions studied.
Mostrar más [+] Menos [-]Effect of lead treatment on medicarpin accumulation and on the gene expression of key enzymes involved in medicarpin biosynthesis in Medicago sativa L Texto completo
2014
Ghelich, Sima | Zarinkamar, Fatemeh | Mohammad Soltani, Bahram | Niknam, Vahid
Lead (Pb) is the most common heavy metal contaminant in the environment. The present study was undertaken to determine the effect of Pb treatment on medicarpin production and accumulation in Medicago sativa L. To this aim, 7- and 30-day-old plants were treated with 0, 120, 240, 500, and 1,000 μM Pb during 10 days. The content of medicarpin was determined by HPLC, and the extent of medicarpin production was deduced from the result of semiquantitative RT-PCR performed on PAL, CHS, and VR genes. HPLC results indicated that medicarpin concentration has been reduced in the roots, while its exudation to the culture medium has been increased. RT-PCR results indicated that the transcript levels of PAL, CHS, and VR genes have not been affected following Pb stress in seedlings. At the vegetative stage, transcript levels of PAL and CHS genes have been reduced in the roots. However, the transcript level of VR gene increased at 120 and 240 μM Pb, while it decreased at higher concentrations. In the shoot, the transcript levels of PAL, CHS, and VR genes were increased following increased concentration of lead in the medium. Overall, q-PCR results suggest that medicarpin biosynthesis has been induced in the shoots and reduced in the roots of the plants treated with a toxic concentration of Pb.
Mostrar más [+] Menos [-]Alternation of antioxidative enzyme gene expression in rice seedlings exposed to methylene blue Texto completo
2014
Yu, Xiao-Zhang | Zhang, Xue-Hong | Yue, Dong-Ming
Hydroponic experiments were conducted with rice seedlings (Oryza sativa L. cv. ND1) exposed to methylene blue (MB) to investigate the accumulation of hydrogen peroxide (H₂O₂) and activities and gene expression of antioxidant enzymes. Results showed that a linear decrease in relative growth rate and water use efficiency was observed with rice seedlings with increasing MB concentrations. MB-induced accumulation of H₂O₂was evident in both roots and shoots. The activities of antioxidative enzymes were analyzed and found to be different at different MB treatment concentrations. The activities of enzymes related to the ascorbate-glutathione cycle were more sensitive to MB treatments than other antioxidative enzymes. Transcript level, by real-time quantitative PCR, of antioxidative enzymes showed that the analyzed genes were differently expressed during different MB concentrations in both roots and shoots. The isoform analysis of superoxide dismutase (SOD) gene showed that the expressions of Cu/ZnSOD and MnSOD were relatively constant, where significant upregulation of FeSOD was observed with rice seedlings exposed to high MB concentrations. Furthermore, the expression of CAT, POD, and MDHAR genes responded biphasically to MB treatments by showing negligible changes at 1.56–15.63 μM MB and significant induction at 31.36–62.52 μM MB. The expression of GR, APX, and DHAR genes showed a remarkable induction to MB. Our results suggest that on transcription level, and in accordance with enzymatic responses, enzymes of GR, APX, and DHAR play central role in the H₂O₂detoxification in rice seedlings under MB exposure.
Mostrar más [+] Menos [-]Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal Texto completo
2014
Yang, Xunan | Chen, Shanshan | Zhang, Renduo
Free-floating aquatic plants Pistia stratiotes and Eichhornia crassipes are well-known invasive species in the tropics and subtropics. The aim of this study was to utilize the plants as cost-effective and environmentally friendly oil sorbents. Multilevel wrinkle structure of P. stratiotes leaf (PL), rough surface of E. crassipes leaf (EL), and box structure of E. crassipes stalk (ES) were observed using the scanning electron microscope. The natural hydrophobic structures and capillary rise tests supported the idea to use P. stratiotes and E. crassipes as oil sorbents. Experiments indicated that the oil sorption by the plants was a fast process. The maximum sorption capacities for different oils reached 5.1–7.6, 3.1–4.8, and 10.6–11.7 g of oil per gram of sorbent for PL, EL, and ES, respectively. In the range of 5–35 °C, the sorption capacities of the plants were not significantly different. These results suggest that the plants can be used as efficient oil sorbents.
Mostrar más [+] Menos [-]Marine sponges with contrasting life histories can be complementary biomonitors of heavy metal pollution in coastal ecosystems Texto completo
2014
Batista, Daniela | Muricy, Guilherme | Rocha, Rafael Chávez | Miekeley, Norbert F.
In this study, we compared the usefulness of a long-living sponge (Hymeniacidon heliophila, Class Demospongiae) and a short-living one (Paraleucilla magna, Class Calcarea) as biomonitors of metallic pollution. The concentrations of 16 heavy metals were analyzed in both species along a gradient of decreasing pollution from the heavily polluted Guanabara Bay to the less impacted coastal islands in Rio de Janeiro, SE Brazil (SW Atlantic). The levels of most elements analyzed were higher in H. heliophila (Al, Co, Cr, Cu, Fe, Mn, Ni, Hg, Ni, and Sn) and P. magna (Ni, Cu, Mn, Al, Ti, Fe, Pb, Co, Cr, Zn, and V) collected from the heavily polluted bay when compared with the cleanest sites. Hymeniacidon heliophila accumulates 11 elements more efficiently than P. magna. This difference may be related to their skeleton composition, histological organization, symbiont bacteria and especially to their life cycle. Both species can be used as a biomonitors of metallic pollution, but while Hymeniacidon heliophila was more effective in concentrating most metals, Paraleucilla magna is more indicated to detect recent pollutant discharges due to its shorter life cycle. We suggest that the complementary use of species with contrasting life histories can be an effective monitoring strategy of heavy metals in coastal environments.
Mostrar más [+] Menos [-]Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils Texto completo
2014
Pereira, S. I. A. | Castro, P. M. L.
In this study, we evaluated the phylogenetic diversity of culturable bacterial endophytes of Zea mays plants growing in an agricultural soil contaminated with Zn and Cd. Endophytic bacterial counts were determined in roots and shoots, and isolates were grouped by random amplified polymorphic DNA and identified by 16S ribosomal RNA (rRNA) gene sequencing. Endophytes were further characterized for the production of plant growth-promoting (PGP) substances, such as NH₃, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide and extracellular enzymes, and for the capacity to solubilize phosphate. The endophytes producing higher amounts of IAA were screened for their tolerance to Zn and Cd and used as bioinoculants for maize seedlings grown in the Zn/Cd-contaminated soil. The counts of endophytes varied between plant tissues, being higher in roots (6.48 log₁₀g⁻¹fresh weight) when compared to shoots (5.77 log₁₀g⁻¹fresh weight). Phylogenetic analysis showed that endophytes belong to three major groups: α-Proteobacteria (31 %), γ-Proteobacteria (26 %) and Actinobacteria (26 %). Pseudomonas, Agrobacterium, Variovorax and Curtobacterium were among the most represented genera. Endophytes were well-adapted to high Zn/Cd concentrations (up to 300 mg Cd l⁻¹and 1,000 mg Zn l⁻¹) and showed ability to produce several PGP traits. Strains Ochrobactrum haematophilum ZR 3-5, Acidovorax oryzae ZS 1-7, Frigoribacterium faeni ZS 3-5 and Pantoea allii ZS 3-6 increased root elongation and biomass of maize seedlings grown in soil contaminated with Cd and Zn. The endophytes isolated in this study have potential to be used in bioremediation/phytoremediation strategies.
Mostrar más [+] Menos [-]Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea Texto completo
2014
Shagol, Charlotte C. | Krishnamoorthy, Ramasamy | Kim, Kiyoon | Sundaram, Subbiah | Sa, Tongmin
The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO₂and 140 to 310 mM NaH₂AsO₄ · 7H₂O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.
Mostrar más [+] Menos [-]Electro-Fenton pretreatment for the improvement of tylosin biodegradability Texto completo
2014
Ferrag-Siagh, Fatiha | Fourcade, Florence | Soutrel, Isabelle | Aït-Amar, Hamid | Djelal, Hayet | Amrane, Abdeltif
The feasibility of an electro-Fenton process to treat tylosin (TYL), a non-biodegradable antibiotic, was examined in a discontinuous electrochemical cell with divided cathodic and anodic compartments. Only 15 min electrolysis was needed for total tylosin degradation using a carbon felt cathode and a platinum anode; while 6 h electrolysis was needed to achieve high oxidation and mineralization yields, 96 and 88 % respectively. Biodegradability improvement was shown since BOD₅/COD increased from 0 initially to 0.6 after 6 h electrolysis (for 100 mg L⁻¹initial TYL). With the aim of combining electro-Fenton with a biological treatment, an oxidation time in the range 2 to 4 h has been however considered. Results of AOS (average oxidation state) and COD/TOC suggested that the pretreatment could be stopped after 2 h rather than 4 h; while in the same time, the increase of biodegradability between 2 and 4 h suggested that this latter duration seemed more appropriate. In order to conclude, biological cultures have been therefore carried out for various electrolysis times. TYL solutions electrolyzed during 2 and 4 h were then treated with activated sludge during 25 days, showing 57 and 67 % total organic carbon (TOC) removal, respectively, namely 77 and 88 % overall TOC removal if both processes were considered. Activated sludge cultures appeared, therefore, in agreement with the assessment made from the analysis of physico-chemical parameters (AOS and COD/TOC), since the gain in terms of mineralization expected from increasing electrolysis duration appeared too low to balance the additional energy consumption.
Mostrar más [+] Menos [-]