Refinar búsqueda
Resultados 2581-2590 de 4,936
GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: leachability and durability Texto completo
2019
Wang, Fei | Zhang, Yunhui | Shen, Zhengtao | Pan, Hao | Xu, Jian | Al-Tabbaa, Abir
In this study, the impact of the curing temperature on leaching behaviour and durability of GGBS-MgO-CaO (GMC)-stabilized/GMC-solidified Pb/Zn-contaminated clay soils was investigated. Toxicity characteristic leaching procedure (TCLP) test, wetting-drying cycles, freeze-thaw cycles and unconfined compression strength (UCS) test were carried out. The influence of curing temperature, binder dosage and curing time on the performance of these samples was investigated. The results show that the leachability and the durability of all samples were improved by increasing curing temperature, curing time and binder dosage. GMCs are more functional in immobilizing Pb compared with Zn, especially in immobilizing high Pb–contaminated soils. The mass loss and Pb/Zn leachability of all samples increased, while their strength decreased after cyclic wetting-drying and cyclic freeze-thaw. Furthermore, curing at 21 °C and 45 °C, the freeze-thaw resistance of 10% GMC-treated soil (GMC10) was found better than that of 10% Portland cement–treated soil (PC10). After 10 cycles of wetting-drying, GMC10 is more chemically stable than PC10.
Mostrar más [+] Menos [-]Physiological and Biochemical Characteristics of Cinnamomum camphora in Response to Cu- and Cd-Contaminated Soil Texto completo
2019
Zhou, Jihai | Cheng, Kun | Zheng, Jiyong | Liu, Zaiqun | Shen, Weibo | Fan, Houbao | Jin, Zhinong
Copper (Cu) and cadmium (Cd) are ordinary heavy metals. Unreasonable development and utilization of these heavy metals will cause severe pollution to the soils and consequently bring damage to human health. Therefore, recovering soils polluted by heavy metals is crucial. An indoor pot experiment was carried out involving seven treatments, namely, low-concentration Cu stress (Cu1), high-concentration Cu stress (Cu2), low-concentration Cd stress (Cd1), high-concentration Cd stress (Cd2), low-concentration Cu–Cd combined stress (Cu1Cd1), and high-concentration Cu–Cd combined stress (Cu2Cd2), and an uncontaminated soil as a control. Results demonstrated that the net photosynthetic rate and chlorophyll content are approximately 8.36–72.51% and 7.22–36.50%, respectively, lower under the Cu, Cd, and Cu–Cd combined stresses than under the control. The net photosynthetic rates are higher under Cu2 and Cd2 than under Cu1 and Cd1; by contrast, the net photosynthetic rate of leaves is lower under Cu2Cd2 than under Cu1Cd1. The net photosynthesis rate of Cinnamomum camphora is significantly positively correlated with superoxide dismutase activity but is significantly negatively correlated with the total chlorophyll, malondialdehyde, soluble sugar, and proline contents. Young Cinnamomum camphora grows well under Cu, Cd, and Cu–Cd combined stresses and is applicable in ecologically restoring heavy metal–contaminated soils.
Mostrar más [+] Menos [-]How autochthonous microorganisms influence physiological status of Zea mays L. cultivated on heavy metal contaminated soils? Texto completo
2019
Rusinowski, Szymon | Szada-Borzyszkowska, Alicja | Zieleźnik-Rusinowska, Paulina | Małkowski, Eugeniusz | Krzyżak, Jacek | Woźniak, Gabriela | Sitko, Krzysztof | Szopiński, Michał | McCalmont, Jon Paul | Kalaji, Hazem M. | Pogrzeba, Marta
The aim of this study was to investigate the effect of autochthonous microorganisms present in soil collected from heavy metal (HM) uncontaminated (Pb ≈ 59 mg kg⁻¹, Cd ≈ 0.4 mg kg⁻¹, Zn ≈ 191 mg kg⁻¹), moderately (Pb ≈ 343 mg kg⁻¹, Cd ≈ 12 mg kg⁻¹, Zn ≈ 1876 mg kg⁻¹), and highly (Pb ≈ 1586 mg kg⁻¹, Cd ≈ 57 mg kg⁻¹, Zn ≈ 3280 mg kg⁻¹) contaminated sites on Zea mays elemental composition, physiological status, and growth parameters. For this purpose, half of the collected soil was sterilized and soil characterization was performed. After 45 days of cultivation, the presence of HM in the soil negatively affected photosynthesis and transpiration rates, relative chlorophyll content, anthocyanins index, chlorophyll fluorescence parameters, and content of oxidative stress products (H₂O₂ and Malondialdehyde) of Zea mays, while soil sterilization had a positive effect on those parameters. Average percentage of colonization of root segments by arbuscular mycorrhiza fungi decreased with an increase of HM contamination in the soil. The increase in shoot concentration of HMs, particularly Cd and Zn, was a result of contaminated soils sterilization. Aboveground biomass of maize cultivated on sterilized soil was 3-fold, 1.5-fold, and 1.5-fold higher for uncontaminated, moderately contaminated and highly contaminated soils respectively when compared to nonsterilized soils. Contrary to our expectation, autochthonous microflora did not improve plant growth and photosynthetic performance; in fact, they had a negative effect on those processes although they did reduce concentration of HMs in the shoots grown on contaminated soils.
Mostrar más [+] Menos [-]Strategic differences in phosphorus stabilization by alum and dolomite amendments in calcareous and red soils Texto completo
2019
Fan, Bingqian | Wang, Jue | Fenton, O. (Owen) | Daly, Karen | Ezzati, Golnaz | Chen, Qing
Surplus phosphorus (P) above agronomic requirements can negatively affect the water status of connected surface and subsurface water bodies. The in situ stabilization of soil P through soil amendment has been recognized as an efficient way to reduce this environmental pressure. However, the mechanism of how P is stabilized during this process and how plant available P is affected are unknown. This can be achieved by sequential chemical extraction and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy investigations. Therefore, in the present study, P-enriched calcareous and red soils were amended with alum, dolomite, and a 1:1 mixture of alum and dolomite (MAD) at a 20 g/kg soil rate, and soil properties and P fractions were measured after a 45-day period. Results showed that alum amendment significantly decreased CaCl₂-P and Olsen-P contents in calcareous and red soils when compared with dolomite. However, dolomite incorporation maintained relatively high P availability and even increased CaCl₂-P and Olsen-P contents by 1.32% and 40.5% in red soil, respectively, compared to control. Amendment with MAD was not as effectively as the alum in P stabilization. Sequential inorganic P extraction indicated that alum dominantly contributed labile P transformed to Al-P in both soils. P K-edge XANES spectroscopy measurements further explained that alum adsorbed phosphate in calcareous soil and precipitated phosphate as AlPO₄ in red soil. Results of P fractionation and Mehlich-3-extracted Ca showed that dolomite mainly adsorbed loosely bound P in calcareous soil and red soil. However, dolomite incorporation in red soil led to Al-P and Fe-P release. The P sorption isotherms showed that dolomite and alum increased soil P sorption maxima and decreased the degree of P saturation (DPS) in both soils, while dolomite declined the Langmuir bonding energy in red soil. Differences in P stabilization by alum and dolomite addition across soil types were closely related to their characteristics, and soil properties changed, especially soil pH.
Mostrar más [+] Menos [-]Vertical variation of bulk and metabolically active prokaryotic community in sediment of a hypereutrophic freshwater lake Texto completo
2019
Tsuboi, Shun | Kohzu, Ayato | Imai, Akio | Iwasaki, Kazuhiro | Yamamura, Shigeki
This study was conducted to acquire novel insight into differences between bulk (16S rDNA) and metabolically active (16S rRNA) prokaryotic communities in the sediment of a hypereutrophic lake (Japan). In the bulk communities, the class Deltaproteobacteria and the order Methanomicrobiales were dominant among bacteria and methanogens. In the metabolically active communities, the class Alphaproteobacteria and the order Methanomicrobiales and the family Methanosaetaceae were frequently found among bacteria and methanogens. Unlike the bulk communities of prokaryotes, the composition of the metabolically active communities varied remarkably vertically, and their diversities greatly decreased in the lower 20 cm of sediment. The metabolically active prokaryotic community in the sediment core was divided into three sections based on their similarity: 0–6 cm (section 1), 9–18 cm (section 2), and 21–42 cm (section 3). This sectional distribution was consistent with the vertical pattern of the sedimentary stable carbon and nitrogen isotope ratios and oxidation–reduction potential in the porewater. These results suggest that vertical disturbance of the sediment may influence the communities and functions of metabolically active prokaryotes in freshwater lake sediments. Overall, our results indicate that rRNA analysis may be more effective than rDNA analysis for evaluation of relationships between actual microbial processes and material cycling in lake sediments.
Mostrar más [+] Menos [-]Effect of Olive Mill Wastewater (OMW) Application on Soil Properties and Wheat Growth Performance Under Rain-Fed Conditions Texto completo
2019
Mohawesh, Osama | Al-Hamaiedeh, Husam | Albalasmeh, Ammar | Qaraleh, Samer | Haddadin, Maisaa
The olive mill wastewater (OMW) properties impose substantial practical and fiscal difficulties for effective management and dumping. A feasible and practical option is a regulated spreading of OMW into the soil. This study aimed to investigate the sustainable reuse of OMW through land application to enhance soil quality and wheat growth performance under rain-fed conditions. OMW was spread at 20, 40, 60, 80, and 120 m³ ha⁻¹ at two sites. Soil physical and chemical properties were measured after OMW application and after harvest. Wheat growth performance and leaf nutrient content were determined. This study revealed no deleterious influence of OMW application on soil properties and wheat growth at the two locations for all OMW application doses. The OMW land spreading improved significantly wheat growth by increasing the biological yield (BYLD) (8.4 to 36.5%), grain yield (GYLD) (20.1 to 79.4%), and harvest index (HI) (4.2 to 60.2%). Based on the measured soil chemical parameters and wheat grain yield, we can suggest that OMW application rate at 60 m³ ha⁻¹ could improve significantly wheat growth without significant negative impact on soil properties. In conclusion, we recommend using OMW as suggested in this study for wheat. However, still the long-term application of OMW assessment and local legislative adaptation of saving use are necessary.
Mostrar más [+] Menos [-]Experimental study on the emission characteristics of a non-road diesel engine equipped with different after-treatment devices Texto completo
2019
Zhang, Yunhua | Lou, Diming | Tan, Piqiang | Hu, Zhiyuan
A comparative experiment was conducted based on a non-road diesel engine to investigate the effects of two after-treatment devices on the engine’s emission characteristics as well as their power and fuel consumption performances. The first after-treatment device is a combination of a diesel oxidation catalyst (DOC) and a catalytic diesel particulate filter (CDPF). The second device is a single CDPF-coated improved noble metal catalyst. Results showed that the two after-treatment devices had almost no effect on the power and fuel consumption performance. The gaseous and particulate emissions of the engine depended on the operation conditions including the speed and load. However, the dual DOC+CDPF system and the single CDPF reduced more than 81% of the carbon monoxide (CO) and 73% of the hydrocarbon (HC) emissions. Notably, the reduction efficiency by the single CDPF was higher than that of the DOC+CDPF system. In terms of the particulate emissions, both after-treatment devices achieved more than 96% reduction of the particle number (PN) and up to 88% reduction of the particulate mass (PM). Similarly, the single CDPF outperformed the dual DOC+CDPF system in reducing particle emissions. Although no changes occurred in the bimodal particle size distribution of the engine after the installation of the two after-treatment devices, they performed differently in reducing particles with different sizes. The particles reduction efficiency of the DOC+CDPF system was higher than that of the single CDPF for the particles smaller than 14.3 nm, and this trend converted for particles larger than 14.3 nm. Improving the noble metal catalyst load in the CDPF ensured a performance that rivaled the DOC+CDPF system. Apart from the NOx emissions, the installation of a single CDPF with an improved noble metal catalyst load can make the non-road diesel engine meet the limits of the China IV emission regulations.
Mostrar más [+] Menos [-]Analysis of influencing factors of the carbon dioxide emissions in China’s commercial department based on the STIRPAT model and ridge regression Texto completo
2019
Wen, Lei | Shao, Hengyang
Commercial department assumes the vital part in energy conservation and carbon dioxide emission mitigation of China. This paper applies the time-series data covering 2001–2015 and introduces the STIRPAT method to research the factors of commercial department’s carbon dioxide emissions in China. The combination of STIRPAT method and ridge regression is first adopted to research carbon dioxide emissions of commercial department in China. Potential influencing factors of carbon dioxide emission, including economic growth, level of urbanization, aggregate population, energy intensity, energy structure and foreign direct investment, are selected to establish the extended stochastic impacts by regression on population, affluence and technology (STIRPAT) model, where ridge regression is adopted to eliminate multicollinearity. The estimation consequences show that all forces were positively related to carbon dioxide emissions in China’s commercial department except for energy structure. Energy structure is the only negative factor and aggregate population is the maximal influencing factor of carbon dioxide emissions. The economic growth, urbanization level, energy intensity and foreign direct investment all positively contribute to carbon dioxide emissions of commercial department. The findings have significant implications for policy-makers to enact emission reduction policies in commercial sector. Therefore, the paper ought to take into full consideration these different impacts of above influencing factors to abate carbon dioxide emissions of commercial sector.
Mostrar más [+] Menos [-]Design and analysis of a novel furnace throat for removing dust particles in flue gas emitted from copper smelting furnace by a computational method Texto completo
2019
Yang, Zhihui | Xiao, Gen | Zeng, Weizhi | Li, Bo | Liu, Shan
A novel furnace throat structure was designed to reduce dust particle concentration in the flue gas emitted from the copper smelting industry. A two-stage turbulence model of the furnace throat based on the RNG k-ε model combined with the stochastic trajectory model was developed to analyze the gas flow and particle trajectories in this furnace throat structure. The resulting turbulent flow fields and particle trajectories under different operating conditions were shown and discussed. It indicates that the furnace throat plays an important role in separating the dust particles from the flue gas by applying centrifugal force and subsequent resistance force. Moreover, the effects of the radius of the inner flue, the number of the spiral plate, and the number of the spiral plate turns on the particle collection efficiency were analyzed to optimize the throat structure. The simulation results show that the furnace throat with inner flue radius of 0.05 m, two spiral plates, and two spiral plate turns has the highest particle collection efficiency. Furthermore, a series of experimental tests were conducted to validate the accuracy of the simulation results, and the measured experimental data show a good correlation with the numerical results.
Mostrar más [+] Menos [-]Sewage contamination under water scarcity effects on stream biota: biofilm, grazers, and their interaction Texto completo
2019
Calapez, Ana Raquel | Elias, Carmen L. | Almeida, Salomé F. P. | Brito, António G. | Feio, Maria João
One of the most common anthropogenic impacts on river ecosystems is the effluent discharge from wastewater treatment plants. The effects of this contamination on stream biota may be intensified in Mediterranean climate regions, which comprise a drought period that leads to flow reduction, and ultimately to stagnant pools. To assess individual and combined effects of flow stagnation and sewage contamination, biofilm and gastropod grazers were used in a 5-week experiment with artificial channels to test two flow velocity treatments (stagnant flow/basal flow) and two levels of organic contamination using artificial sewage (no sewage input/sewage input). Stressors’ effects were determined on biofilm total biomass and chlorophyll (Chl) content, on oxygen consumption and growth rate of the grazers (Theodoxus fluviatilis), and on the interaction grazer-biofilm given by grazer’s feeding activity (i.e., biofilm consumption rate). The single effect of sewage induced an increase in biofilm biomass and Chl-a content, simultaneously increasing both grazers’ oxygen consumption and their feeding activity. Diatoms showed a higher sensitivity to flow stagnation, resulting in a lower content of Chl-c. Combined stressors interacted antagonistically for biofilm total biomass, Chl-b contents, and grazers’s feeding rate. The effect of sewage increasing biofilm biomass and grazing activity was reduced by the presence of flow stagnation (antagonist factor). Our findings suggest that sewage contamination has a direct effect on the functional response of primary producers and an indirect effect on primary consumers, and this effect is influenced by water flow stagnation.
Mostrar más [+] Menos [-]