Refinar búsqueda
Resultados 261-270 de 7,319
Short- and medium-chain chlorinated paraffins in honey from China: Distribution, source analysis, and risk assessment
2022
Dong, Shujun | Qi, Suzhen | Zhang, Su | Wang, Yaxin | Zhao, Yin | Zou, Yun | Luo, Yiming | Wang, Peilong | Wu, Liming
Chlorinated paraffins (CPs) are industrial chemicals produced in large quantities. Short-chain CPs (SCCPs) were classified as persistent organic pollutants under the Stockholm Convention in 2017. Medium-chain CPs (MCCPs) became candidate persistent organic pollutants in 2021. CPs are now ubiquitously found in the environment. Honey bees can be exposed to CPs during foraging, and this exposure subsequently results in the contamination of honey and other bee products along with colony food production and storage. Here, SCCP and MCCP concentrations in honey collected from Chinese apiaries in 2015 and 2021 were determined. Total CP concentrations in honey from 2021 to 2015 were comparable, but the ratio of MCCPs/SCCPs was higher in 2021 than in 2015. SCCP and MCCP congener group profiles in all honey samples were similar and dominated by C₁₀–₁₁Cl₆–₇ and C₁₄Cl₆–₇, respectively. MCCP concentrations were also higher than SCCP concentrations in bees, pollen, and wax but not in bee bread, which were all collected in 2021. The order of average CP concentrations was determined as wax > bee > pollen > bee bread > honey. Poor relationships were found between SCCP concentrations in honey and other samples, but a relationship between MCCP concentrations in honey and other samples was observed. Migration tests of CPs in plastic bottles showed essentially no migration into honey during storage. The risks to humans from CPs in honey are low.
Mostrar más [+] Menos [-]Exposure of construction workers to hazardous emissions in highway rehabilitation projects measured with low-cost sensors
2022
Blaauw, Sheldon A. | Maina, James W. | O'Connell, Johan
Construction workers on highway rehabilitation projects can be exposed to a combination of traffic- and construction-related emissions. To assess the personal exposure a worker experiences, a portable battery-operated Air Quality Device (AQD) was utilised to measure emissions during normal construction operations of a major road rehabilitation project. Emissions measured were nitrogen dioxide (NO₂), Total Volatile Organic Compounds (TVOCs) and Particulate Matter (PM₁₀, PM₂.₅, and PM₁). The objective of the paper is to document the hazardous emissions that construction workers may be exposed to and allow for a basis of informed decision making to mitigate the risks of a road construction project. Most critically, this article is designed to raise awareness of the potential impact to a worker's wellbeing as well as highlight the need for further research. Through statistical analysis, asphalt paving was identified as the most hazardous activity in terms of exposure relative to other activities. This activity was further assessed using discrete-time Markov chain Monte Carlo simulations with results indicating a high probability that workers may be exposed to greater hazardous emission concentrations than measured. Limiting the distance to the source of emissions, large-scale use of warm-mix asphalt and reducing the idling times of construction vehicles were identified as practical mitigation measures to reduce exposure and aid in achieving zero-harm objectives. Finally, it is found that males are more susceptible to long-term implications of hazardous emission inhalation and should be more aware if the scenarios they might work in expose them to this.
Mostrar más [+] Menos [-]Metabolic syndrome and pesticides: A systematic review and meta-analysis
2022
Lamat, Hugo | Sauvant-Rochat, Marie-Pierre | Tauveron, Igor | Bagheri, Reza | Ugbolue, Ukadike C. | Maqdasi, Salwan | Navel, Valentin | Dutheil, Frédéric
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%–37%). Overall organochlorine increased the risk of MetS by 23% (14–32%), as well as for most types of organochlorines: hexachlorocyclohexane increased the risk by 53% (28–78%), hexachlorobenzene by 40% (0.01–80%), dichlorodiphenyldichloroethylene by 22% (9–34%), dichlorodiphenyltrichloroethane by 28% (5–50%), oxychlordane by 24% (1–47%), and transnonchlor by 35% (19–52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35–56%) using crude data or by 19% (10–29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17–55%) and transnonchlor (25% risk increase, 3–48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.
Mostrar más [+] Menos [-]Halogenated flame retardants in Irish waste polymers: Concentrations, legislative compliance, and preliminary assessment of temporal trends
2022
Drage, Daniel | Sharkey, Martin | Al-Omran, Layla Salih | Stubbings, William A. | Berresheim, Harald | Coggins, Marie | Rosa, André Henrique | Harrad, Stuart
Halogenated flame retardants (HFRs) were measured in 470 waste plastic articles from Ireland between 2019 and 2020. We identified articles containing concentrations of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD), and tetrabromobisphenol-A (TBBP-A) exceeding European Union limits. Enforcement of existing limits of 1000 mg/kg will render an estimated 3.1% (2800 t) of articles in the waste categories studied unrecyclable, increasing to: 4.0, 4.9, and 5.6% if limits were reduced to 500, 200, and 100 mg/kg respectively. Meanwhile, enforcing limits of 1,000, 500, 200, and 100 mg/kg will respectively remove 78, 82, 84, and 85% of PBDEs, HBCDD, and TBBP-A present in such waste. Other FRs targeted were detected infrequently and predominantly at very low concentrations. However, 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) was detected in 3 display/IT product samples at 14,000 to 32,000 mg/kg, indicating elevated concentrations of FRs used as alternatives to PBDEs and HBCDD, will likely increase in future. Comparison with data for Ireland in 2015–16, revealed concentrations and exceedances of limits for PBDEs, HBCDD, and TBBP-A were similar or have declined. For end-of-life vehicle fabrics and foams, HBCDD and ΣPBDE concentrations declined significantly (p < 0.05) since 2015–16. Moreover, ΣPBDE concentrations in waste small domestic appliances are significantly lower in 2019–20, with a similarly significant decline for TBBP-A in waste IT and telecommunications articles. In contrast, HBCDD concentrations in waste extruded polystyrene increased significantly between 2015–16 and 2019–20. For other waste categories studied, no statistically significant temporal trends are evident (p > 0.05). Fewer samples exceeded PBDE and HBCDD limits in 2019–20 (7.8%) than 2015–16 (8.7%), while exceedances for TBBP-A fell from 2.4% in 2015–16 to 0.57% in 2019–20. While comparison between the 2015–16 and 2019-20 datasets provide a preliminary indication of changes, further monitoring is required if the impact of legislation designed to eliminate HFRs from the waste stream is to be fully evaluated.
Mostrar más [+] Menos [-]Comparison of the efficiency and microbial mechanisms of chemical- and bio-surfactants in remediation of petroleum hydrocarbon
2022
Zhuang, Xuliang | Wang, Yaxin | Wang, Haoyu | Dong, Yuzhu | Li, Xianglong | Wang, Shijie | Fan, Haonan | Wu, Shanghua
Surfactant-enhanced remediation (SER) is one of the most effective methods for petroleum hydrocarbon-contaminated sites compared to single physical and chemical methods. However, biosurfactants are not as commonly used as chemical surfactants, and the actual remediation effects and related mechanisms remain undefined. Therefore, to comprehensively compare the remediation effects and biological mechanisms of biosurfactants and chemical surfactants, soil column leaching experiments including two biosurfactants (rhamnolipids and lipopeptide) and three commercially used chemical surfactants (Tween 80, Triton X-100, and Berol 226SA) were conducted. After seven days of leaching, rhamnolipids exhibited the highest petroleum hydrocarbon removal rate of 61.01%, which was superior to that of chemical surfactants (11.73–18.75%) in n-alkanes C10–C30. Meanwhile, rhamnolipids exhibited a great degradation advantage of n-alkanes C13–C28, which was 1.22–30.55 times that of chemical surfactants. Compared to chemical surfactants, biosurfactants significantly upregulated the soil's biological functions, including soil conductivity (80.90–155.56%), and soil enzyme activities of lipase (90.31–497.10%), dehydrogenase (325.00–655.56%), core enzyme activities of petroleum hydrocarbon degradation, and quorum sensing between species. Biosurfactants significantly changed the composition of Pseudomonas, Citrobacter, Acidobacteriota, and Enterobacter at the genus level. Meanwhile, chemical surfactants had less influence on the bacterial community and interactions between species. Moreover, the biosurfactants enhanced the microbial interactions and centrality of petroleum hydrocarbon degraders in the community based on the network. Overall, this work provides a systematic comparison and understanding of the chemical- and bio-surfactants used in bioremediation. In the future, we intend to apply biosurfactants to practical petroleum hydrocarbon-contaminated fields to observe realistic remediation effects and compare their functional mechanisms.
Mostrar más [+] Menos [-]A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology
2022
Henry, Jason | Bai, Yutao | Kreuder, Florian | Saaristo, Minna | Kaslin, Jan | Wlodkowic, Donald
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
Mostrar más [+] Menos [-]Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer
2022
Sörengård, Mattias | Bergström, Sofia | McCleaf, Philip | Wiberg, Karin | Ahrens, Lutz
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g⁻¹ dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L⁻¹. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L⁻¹ (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L⁻¹ and 8 ng L⁻¹ (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
Mostrar más [+] Menos [-]Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie M. | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier
Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
Mostrar más [+] Menos [-]Recyclable aminophenylboronic acid modified bacterial cellulose microspheres for tetracycline removal: Kinetic, equilibrium and adsorption performance studies for hoggery sewer
2022
Zhang, Gengrong | Li, Linhan | Zhou, Guoqing | Lin, Zhiyang | Wang, Jun | Wang, Gaoxue | Ling, Fei | Liu, Tianqiang
Significant concerns have been raised regarding to the pollution of antibiotics in recent years due to the abuse of antibiotics and their high detection rate in water. Herein, a novel super adsorbent, boronic acid-modified bacterial cellulose microspheres with a size of 415 μm in diameter was prepared through a facile water-in-oil emulsion method. The adsorbent was characterized by atomic force microscopy, scanning electron microscopy, and fourier transform infrared spectroscopy analyses to confirm its properties. The microspheres were applied as packing materials for the adsorption of tetracycline (TC) from an aqueous solution and hoggery sewer via the reversible covalent interaction between cis-diol groups in TC molecules and the boronic acid ligand. TC adsorption performance had been systemically investigated under various conditions, including the pH, temperature, TC concentration, contact time, and ionic strength. Results showed that the adsorption met pseudo-second-order, Elovich kinetic model and Sips, Redlich-Peterson isothermal models. And the adsorption process was spontaneous and endothermic, with the maximum TC adsorption capacity of 614.2 mg/g. After 18 adsorption-desorption cycles, the adsorption capacity remained as high as 84.5% compared with their original adsorption capacity. Compared with other reported adsorption materials, the microspheres had high adsorption capacity, a simple preparation process, and excellent recovery performance, demonstrating great potential in application on TC removal for water purification and providing new insights into the antibiotic's adsorption behavior of bacterial cellulose-based microspheres.
Mostrar más [+] Menos [-]Opposite impact of DOM on ROS generation and photoaging of aromatic and aliphatic nano- and micro-plastic particles
2022
Cao, Runzi | Liu, Xinna | Duan, Jiajun | Gao, Bowen | He, Xiaosong | Nanthi Bolan, | Li, Yang
Dissolved organic matter (DOM) plays a significant role in the photochemical behavior of nano- and micro-plastic particles (NPs/MPs). We investigated the influence of DOM on the mechanism on the photoaging of NPs/MPs with different molecular structures under UV₃₆₅ irradiation in water. DOM components used in this study are mainly humic acid and fulvic acid. The results showed that DOM promoted the weathering of aliphatic NPs/MPs (polypropylene (PP)), but inhibited or had only a minor effect on the photoaging of aromatic NPs/MPs (polystyrene (PS) NPs/MPs, carboxyl-modified PS NPs, amino-modified PS NPs, and polycarbonate MPs). NPs with a large surface area may adsorb sufficient DOM on the particle surfaces through π-π interactions, which competes with NPs for photon absorption sites, thus, can delay the photoaging of PS NPs. Aromatic MPs may release phenolic compounds that quench •OH, thereby weakening the photoaging process. For aliphatic MPs, the detection of peracid, aldehyde, and ketone groups on the polymer surface indicated that DOM promoted weathering of PP MPs, which was primarily because the generation of •OH due to DOM photolysis may attack the polymer by C–C bond cleavage and hydrogen extraction reactions. This study provides insight into the UV irradiation weathering process of NPs/MPs of various compositions and structures, which are globally distributed in water.
Mostrar más [+] Menos [-]