Refinar búsqueda
Resultados 2851-2860 de 3,208
The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands Texto completo
2015
Mander, Ü. (Ülo) | Maddison, Martin | Soosaar, Kaido | Teemusk, Alar | Kanal, Arno | Uri, Veiko | Truu, Jaak
The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands Texto completo
2015
Mander, Ü. (Ülo) | Maddison, Martin | Soosaar, Kaido | Teemusk, Alar | Kanal, Arno | Uri, Veiko | Truu, Jaak
Floods control greenhouse gas (GHG) emissions in floodplains; however, there is a lack of data on the impact of short-term events on emissions. We studied the short-term effect of changing groundwater (GW) depth on the emission of (GHG) carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) in two riparian grey alder (Alnus incana) stands of different age in Kambja, southern Estonia, using the opaque static chamber (five replicates in each site) and gas chromatography methods. The average carbon and total nitrogen content in the soil of the old alder (OA) stand was significantly higher than in the young alder (YA) stand. In both stands, one part was chosen for water table manipulation (Manip) and another remained unchanged with a stable and deeper GW table. Groundwater table manipulation (flooding) significantly increases CH₄emission (average: YA-Dry 468, YA-Manip 8,374, OA-Dry 468, OA-Manip 4,187 μg C m⁻² h⁻¹) and decreases both CO₂(average: OA-Dry 138, OA-Manip 80 mg C m⁻² h⁻¹) and N₂O emissions (average: OA-Dry 23.1, OA-Manip 11.8 μg N m⁻² h⁻¹) in OA sites. There was no significant difference in CO₂and CH₄emissions between the OA and YA sites, whereas in OA sites with higher N concentration in the soil, the N₂O emission was significantly higher than at the YA sites. The relative CO₂and CH₄emissions (the soil C stock-related share of gaseous losses) were higher in manipulated plots showing the highest values in the YA-Manip plot (0.03 and 0.0030 % C day⁻¹, respectively). The soil N stock-related N₂O emission was very low achieving 0.000019 % N day⁻¹in the OA-Dry plot. Methane emission shows a negative correlation with GW, whereas the 20 cm depth is a significant limit below which most of the produced CH₄is oxidized. In terms of CO₂and N₂O, the deeper GW table significantly increases emission. In riparian zones of headwater streams, the short-term floods (e.g. those driven by extreme climate events) may significantly enhance methane emission whereas the long-term lowering of the groundwater table is a more important initiator of N₂O fluxes from riparian gley soils than flood pulses.
Mostrar más [+] Menos [-]The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands Texto completo
2015
Mander, Ülo | Maddison, M. | Soosaar, K. | Teemusk, A. | Kanal, A. | Uri, V. | Truu, J. | Tartu Ülikool = University of Tartu [Estonie] | Hydrosystèmes et Bioprocédés (UR HBAN) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Estonian University of Life Sciences (EMU)
International audience | Floods control greenhouse gas (GHG) emissions in floodplains; however, there is a lack of data on the impact of short-term events on emissions. We studied the short-term effect of changing groundwater (GW) depth on the emission of (GHG) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in two riparian grey alder (Alnus incana) stands of different age in Kambja, southern Estonia, using the opaque static chamber (five replicates in each site) and gas chromatography methods. The average carbon and total nitrogen content in the soil of the old alder (OA) stand was significantly higher than in the young alder (YA) stand. In both stands, one part was chosen for water table manipulation (Manip) and another remained unchanged with a stable and deeper GW table. Groundwater table manipulation (flooding) significantly increases CH4 emission (average: YA-Dry 468, YA-Manip 8,374, OA-Dry 468, OA-Manip 4,187 μg C m−2 h−1) and decreases both CO2 (average: OA-Dry 138, OA-Manip 80 mg C m−2 h−1) and N2O emissions (average: OA-Dry 23.1, OA-Manip 11.8 μg N m−2 h−1) in OA sites. There was no significant difference in CO2 and CH4 emissions between the OA and YA sites, whereas in OA sites with higher N concentration in the soil, the N2O emission was significantly higher than at the YA sites. The relative CO2 and CH4 emissions (the soil C stock-related share of gaseous losses) were higher in manipulated plots showing the highest values in the YA-Manip plot (0.03 and 0.0030 % C day−1, respectively). The soil N stock-related N2O emission was very low achieving 0.000019 % N day−1 in the OA-Dry plot. Methane emission shows a negative correlation with GW, whereas the 20 cm depth is a significant limit below which most of the produced CH4 is oxidized. In terms of CO2 and N2O, the deeper GW table significantly increases emission. In riparian zones of headwater streams, the short-term floods (e.g. those driven by extreme climate events) may significantly enhance methane emission whereas the long-term lowering of the groundwater table is a more important initiator of N2O fluxes from riparian gley soils than flood pulses.
Mostrar más [+] Menos [-]Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India Texto completo
2015
Singh, Chander Kumar | Mukherjee, Saumitra
Fluoride-enriched water has become a major public health issue in India. The present study tries to evaluate the geochemical mechanism of fluoride enrichment in groundwater of western India. Total 100 groundwater samples were collected for the study spreading across the entire study area. The results of the analyzed parameters formed the attribute database for geographical information system (GIS) analysis and final output maps. A preliminary field survey was conducted and fluoride testing was done using Hach make field kits. The fluoride concentration ranges from 0.08 to 6.6 mg/L (mean 2.4 mg/L), with 63 % of the samples containing fluoride concentrations that exceed the World Health Organization (WHO) drinking water guideline value of 1.5 mg/L and 85 % samples exceeding the Bureau of Indian Standards (BIS) guidelines of 1 mg/L. The study also reveals high concentration of nitrate that is found to be above WHO standrads. The dominant geochemical facies present in water are Na-Cl-HCO₃(26 samples), Na-Ca-Cl-HCO₃(20 samples), Na-Cl (14 samples), and Na-Ca-Mg-Cl-HCO₃(11 samples); however, sodium and bicarbonate being the major component in all the water types of 100 samples, which in fact has a tendency to increase fluoride concentration in water by dissolving fluoride from fluorite. The thermodynamic considerations between the activities of calcium, fluoride, and bicarbonate suggest that fluoride concentration is being governed by activity of calcium ion. X-ray diffraction analysis of sediments reveals calcite and fluorite are the main solubility-control minerals controlling the aqueous geochemistry of high fluoride groundwater. The results indicate that the fluoride concentration in groundwater is mainly governed by geochemical composition of rocks, such as metamorphic granites and sedimentary rocks, alkaline hydrogeological environment, climatic conditions, high temperature and lesser rainfall, and geochemical processes such as weathering, evaporation, dissolution, and ion exchange.
Mostrar más [+] Menos [-]Assessment of silver nanoparticle toxicity for common carp (Cyprinus carpio) fish embryos using a novel method controlling the agglomeration in the aquatic media Texto completo
2015
Oprsal, Jakub | Blaha, Ludek | Pouzar, Miloslav | Knotek, Petr | Vlcek, Milan | Hrda, Katerina
Formation of agglomerates and their rapid sedimentation during aquatic ecotoxicity testing of nanoparticles is a major issue with a crucial influence on the risk assessment of nanomaterials. The present work is aimed at developing and testing a new approach based on the periodic replacement of liquid media during an ecotoxicological experiment which enabled the efficient monitoring of exposure conditions. A verified mathematical model predicted the frequencies of media exchanges which checked for formation of agglomerates from silver nanoparticles AgNP with 50 nm average size of the original colloid. In the model experiments, embryos of common carp Cyprinus carpio were exposed repeatedly for 6 h to AgNPs (5–50 μm Ag L⁻¹) either under semistatic conditions (exchange of media after 6 h) or in variants with frequent media exchanges (varying from 20 to 300 min depending on the AgNP colloid concentration and the desired maximum agglomerate size of 200 or 400 nm). In contrast to other studies, where dissolved free metals are usually responsible for toxic effects, our 144-h experiments demonstrated the importance of AgNP agglomerates in the adverse effects of nanosilver. Direct adsorption of agglomerates on fish embryos locally increased Ag concentrations which resulted in pronounced toxicity particularly in variants with larger 400 nm agglomerates. The present study demonstrates the suitability of the novel methodology in controlling the conditions during aquatic nanomaterial toxicity testing. It further provided insights into the mechanisms underlying the effects of AgNP, which rank on a global scale among the most widely used nanomaterials.
Mostrar más [+] Menos [-]Estimation of changes in fitness components and antioxidant defense of Drosophila subobscura (Insecta, Diptera) after exposure to 2.4 T strong static magnetic field Texto completo
2015
Todorović, Dajana | Perić-Mataruga, Vesna | Mirčić, Dejan | Ristić-Djurović, Jasna | Prolić, Zlatko | Petković, Branka | Savić, Tatjana
As an ecological factor, a magnetic field can affect insects causing a wide range of responses. The main purpose of this study was to analyze the fitness components (postembryonic development and viability of individuals) and the antioxidant defense (superoxide dismutase, catalase, and total glutathione) in laboratory strains of Drosophila subobscura, originating from oak and beech forests after exposure to the strong static magnet (2.4 T, VINCY Cyclotron magnet). The first instar larvae were placed near the north pole (N group) or the south pole (S group) of the magnet for 2 h. Oak and beech populations of D. subobscura had longer development time and lower viability in N and S groups compared to controls. These differences were significant only in S group of oak population and in N group of beech population. Total glutathione content was significantly decreased in both exposed groups of oak population, while catalase activity was significantly increased in both exposed groups of beech population. Being significantly decreased in both exposed groups of oak population and significantly increased in S group of beech population in comparison to controls, superoxide dismutase activity was observed in different values. According to the results, it can be stated that applied static magnetic field could be considered a potential stressor influencing the fitness components and antioxidant defense in Drosophila flies.
Mostrar más [+] Menos [-]Direct gas–solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration Texto completo
2015
Veetil, Sanoopkumar Puthiya | Pasquier, Louis-César | Blais, Jean-François | Cecchi, Emmanuelle | Kentish, Sandra | Mercier, Guy
Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO₂ sequestration by avoiding the mineral extraction and separate CO₂ capture steps. The present is a laboratory scale study to assess the possibility of CO₂ fixation in serpentinite mining residues via direct gas–solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO₂ composition of 18 vol.% CO₂. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas–solid carbonation of serpentinite mining residues is negligible, but the residues removed CO₂ from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas–solid carbonation, but the measured rates are too low for practical application. The maximum CO₂ fixation obtained is 0.07 g CO₂ when reacting 1 g of residue at 200 °C and 25 barg (pCO₂ ≈ 4.7) in a gas mixture containing 18 vol.% CO₂ and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas–solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO₂ fixation regardless of the percentage of water vapor.
Mostrar más [+] Menos [-]Identification and apportionment of hazardous elements in the sediments in the Yangtze River estuary Texto completo
2015
Wang, Jiawei | Liu, Ruimin | Wang, Haotian | Yu, Wenwen | Xu, Fei | Shen, Zhenyao
In this study, positive matrix factorization (PMF) and principal components analysis (PCA) were combined to identify and apportion pollution-based sources of hazardous elements in the surface sediments in the Yangtze River estuary (YRE). Source identification analysis indicated that PC1, including Al, Fe, Mn, Cr, Ni, As, Cu, and Zn, can be defined as a sewage component; PC2, including Pb and Sb, can be considered as an atmospheric deposition component; and PC3, containing Cd and Hg, can be considered as an agricultural nonpoint component. To better identify the sources and quantitatively apportion the concentrations to their sources, eight sources were identified with PMF: agricultural/industrial sewage mixed (18.6 %), mining wastewater (15.9 %), agricultural fertilizer (14.5 %), atmospheric deposition (12.8 %), agricultural nonpoint (10.6 %), industrial wastewater (9.8 %), marine activity (9.0 %), and nickel plating industry (8.8 %). Overall, the hazardous element content seems to be more connected to anthropogenic activity instead of natural sources. The PCA results laid the foundation for the PMF analysis by providing a general classification of sources. PMF resolves more factors with a higher explained variance than PCA; PMF provided both the internal analysis and the quantitative analysis. The combination of the two methods can provide more reasonable and reliable results.
Mostrar más [+] Menos [-]Study of photodegradation and photooxidation of p-arsanilic acid in water solutions at pH = 7: kinetics and by-products Texto completo
2015
Czaplicka, Marianna | Jaworek, Katarzyna | Bąk, Marta
The paper presents the kinetics and proposed pathways photodegradation and photooxidation of p-arsanilic acid, in a neutral environment by ozone and hydrogen peroxide. The results showed that in a neutral environment, photoozonation process was characterized by the highest decomposition rate constant (k) (k = 31.8 × 10⁻³ min⁻¹). The rate constants decreased in the order UV/O₃ > O₃ > UV/H₂O₂ > H₂O₂ > UV. It was also found that under pH = 7, decomposition of p-arsanilic acid leads mainly to the formation of aniline, which undergoes secondary reactions. Intermediate products of oxidation and photooxidation by hydrogen peroxide like nitrobenzene, nitrophenol, azobenzenes, and phenylazophenol were identified depending on processes. However, in the photodegradation process, formation of nitrasone as a reaction product of p-arsanilic acid with oxygen in the singlet state was observed. In the case of ozonation and photoozonation, in addition, aniline formation of carboxylic acids was observed.
Mostrar más [+] Menos [-]Occurrence and fate of selected anticancer, antimicrobial, and psychotropic pharmaceuticals in an urban river in a subcatchment of the Yodo River basin, Japan Texto completo
2015
Azuma, Takashi | Ishiuchi, Hirotaka | Inoyama, Tomomi | Teranishi, Yusuke | Yamaoka, Misato | Sato, Takaji | Mino, Yoshiki
Pollution status of six anticancer agents in the river water and effluents of sewage treatment plants (STPs) in Japan was surveyed with comparative analysis of the levels of four microbial and one psychotropic pharmaceuticals widely used for therapeutic medication. The area of survey is located in the Kanzaki–Ai River basin which is a major subcatchment of the Yodo River basin and is centered on a highly populated area that includes the middle and downstream reaches of the Yodo River. Selected cancer agents were bicalutamide, capecitabine, cyclophosphamide, doxifluridine, tamoxifen, and tegafur. A combination of strong anion solid-phase extraction cartridge under pH 11 for adsorption and optimization of liquid chromatography–tandem mass spectroscopy (LC–MS/MS) system was necessary to ensure high recovery rates (63–124 % for river water and 52–115 % for STP effluent). The year-round survey of these compounds in four seasons showed that all anticancer compounds were detected at median concentrations ranged from not detected to 32 ng/L in the river water and from not detected to 245 ng/L in the effluents of sewage treatment plants not using ozonation. In the case of bicalutamide (an active antiandrogen used to treat prostate cancer), the maximum concentration detected was 254 ng/L in river water and 1032 ng/L in non-ozonated sewage treatment plant effluents. Based on the mass balance, sewage treatment plants were the primary sources of anticancer compounds as well as the other pharmaceuticals in the river, and the attenuation effect of the river water was small. Ozonation at sewage treatment plants was effective in removing these compounds. To the best of our knowledge, this study is the first to report the existence of bicalutamide, doxifluridine, and tegafur in the river environment.
Mostrar más [+] Menos [-]Anaerobic degradation of increased phenol concentrations in batch assays Texto completo
2015
Wirth, Benjamin | Krebs, Maria | Andert, Janet
Phenol is a wastewater contaminant depicting an environmental hazard. It can be found in effluents from various industrial processes and becomes even more common as a waste by-product of biomass-based bioenergy concepts. Because of its toxicity to anaerobic microorganisms, it can be recalcitrant during biogas production and anaerobic wastewater treatment. This study tested increased phenol loads (100 to 5000 mg L⁻¹) as the sole carbon source in a semi-continuous mesophilic anaerobic adaption experiment using an unadapted microbial community from a standard biogas plant. Phenol was completely degraded at starting concentrations of up to 2000 mg L⁻¹. At 5000 mg L⁻¹, complete inhibition of the anaerobic community was observed. Lag times were reduced down to less than a day treating 2000 mg L⁻¹ after 16 weeks of adaption to gradually increased phenol concentrations. Specific degradation rates increased consecutively up to 7.02 mg gVS ⁻¹ day⁻¹ at 2000 mg L⁻¹. This concentration was completely degraded within less than 12 days. The microbial community composition was assessed using 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analysis. In the bacterial community, no clear shift was visible. Clostridia were with the highest relative abundance of 27 %, the most prominent bacterial class. T-RFs representing Clostridia, Anaerolinaceae, Flavobacteria, and Bacteroidea appeared at similar relative abundance level throughout the experiment. The archaeal community, however, changed from a Methanosarcinales-dominated community (57 %) to a community with a nearly even distribution of Methanobacteriales (21 %) and Methanosarcinales (34 %) with increasing starting phenol concentration.
Mostrar más [+] Menos [-]Polychlorinated biphenyls and organochlorine pesticides in atmospheric particulate matter of Northern China: distribution, sources, and risk assessment Texto completo
2015
Ding, Shuangshuang | Dong, Faqin | Wang, Bin | Chen, Shu | Zhang, Liufei | Chen, Mengjun | Gao, Mei | He, Ping
The objectives of this work are to track the contamination levels, distribution characteristics, and sources of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in atmospheric particulate matter (APM) of Northern China and to provide more comprehensive and fundamental data for risk assessment of organochlorine contaminants (OCs) in environments. Samples were extracted and purified by the microwave-assisted extraction and solid-phase extraction system, respectively. PCBs and OCPs were analyzed by gas chromatograph-mass spectrometer. The concentrations of ΣPCBs and ΣOCPs ranged from 0.73 to 112.65 ng/g and 0.14 to 34.73 ng/g, respectively. PCBs in atmospheric particulates collected from Shijiazhuang City had the highest concentration, whereas OCP congeners were at the relatively low levels. However, the highest concentration of OCPs occurred in Yongning City. The principal component analysis indicated that the predominant compositions of PCBs in most of samples were tetrachlorobiphenyl (Tetra-CB), pentachlorobiphenyl (Penta-CB), hexachlorobiphenyl (Hexa-CB), and heptachlorbiphenyl (Hepta-CB), while hexachlorocyclohexanes (HCHs), DDTs, chlordanes, and endosulfans were the dominant components of OCPs, which was attributed to their application characteristics. OCs in those particles were further used to assess a potential cancer risk to humans via ingestion, dermal contact, and inhalation. Cancer risk was evaluated in airborne particles caused by PCBs and OCPs. TEQPCBₛ values suggested that the representative areas were subject to different pollution degrees. However, the pollution of OCPs in certain areas should be a concern due to 41.6 % of the high risk, which could pose a potential risk to organisms.
Mostrar más [+] Menos [-]