Refinar búsqueda
Resultados 2961-2970 de 4,033
Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation
2016
Sayed, Murtaza | Khan, Javed Ali | Shah, Luqman Ali | Shah, Noor S. | Khan, Hasan M. | Rehman, Faiza | Khāna, Ābadura Rahamāna | Khan, Asad M.
This study reports the efficiency of gamma-ray irradiation to degrade quinolone antibiotic, norfloxacin, in aqueous solution. Laboratory batch experiments were conducted to determine the “pseudo-first” order degradation kinetics of norfloxacin in the concentration ranges of 3.4–16.1 mg L⁻¹ by gamma-ray irradiation. The dose constant was found to be dependent on the initial concentration of norfloxacin and gamma-ray irradiation dose rate (D ᵣ). The saturation of norfloxacin sample solutions with N₂, air or N₂O, and the presence of tert-butanol and 2-propanol showed that •OH played more crucial role in the degradation of norfloxacin. The second order rate constants of •OH, eₐq ⁻, and •H with norfloxacin were calculated to be 8.81 × 10⁹, 9.54 × 10⁸, and 1.10 × 10⁹ M⁻¹ s⁻¹, respectively. The effects of various additives including CO₃ ²⁻, HCO₃ ⁻, NO₃ ⁻, NO₂ ⁻, and thiourea and the pH of the medium on the degradation of norfloxacin were also investigated. Norfloxacin degradation was lower in surface water and wastewater than in ultrapure water. Several degradation byproducts of norfloxacin were identified from which the possible degradation pathway was proposed.
Mostrar más [+] Menos [-]Morphology characteristics and mode of CaO encapsulation during treatment of electrolytic manganese solid waste
2016
Du, Bing | Dan, Zhigang | Zhou, Changbo | Guo, Tingzheng | Liu, Jianguo | Zhang, Haiyan | Shi, Feifei | Duan, Ning
Electrolytic manganese solid waste (EMSW) is composed of manganese, calcium, and other sulfates. Common practice in China is to treat EMSW with quicklime (CaO); however, the per unit mass treatment efficiency of CaO is low. Studies of the interface between the CaO and EMSW particle and their microstructural characteristics are limited; these interactions may explain the low treatment efficiency. We conducted leaching experiments and measurements of the secondary heat generated by hydration of CaO to assess the extent of excess CaO in EMSW. The microstructure of CaO was also analyzed. It was determined that excess CaO particles in the EMSW were encapsulated, which influenced CaO hydration and morphology. The outer layer of the encapsulated CaO contained high levels of calcium and sulfur, which postulated to be caused by CaSO₄ precipitates formed from the reaction of CaO hydration products with soluble sulfate. Three types of CaO encapsulation were identified: fully encapsulated CaO (55 % of the total CaO), partly encapsulated CaO (32 %), and self-encapsulated CaO (13 %). High concentrations of soluble sulfates in EMSW cause CaO encapsulation. These react to form CaSO₄, which could negatively influence mass transfer and result in low treatment efficiency of EMSW by CaO.
Mostrar más [+] Menos [-]Fast determination of 24 steroid hormones in river water using magnetic dispersive solid phase extraction followed by liquid chromatography–tandem mass spectrometry
2016
Zhao, Yong-Gang | Zhang, Yun | Zhan, Ping-Ping | Chen, Xiao Hong | Pan, Sheng-Dong | Jin, Mi-Cong
The easiness-to-handle of the magnetic dispersive solid phase extraction (Mag-dSPE) procedure was developed for preconcentration of 24 steroid hormones in river water. Ethylenediamine-functionalized magnetic carbon nanotubes (EDA@Mag-CNTs) were synthesised by a simple one-pot reaction and were used as sorbent in Mag-dSPE procedure. The properties of the EDA@Mag-CNTs were characterized by transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). An ultra-fast liquid chromatography–tandem quadrupole mass spectrometry (UFLC-MS/MS) method for determination of 24 steroid hormones in river water at nanograms per liter had been developed with pretreatment of the samples by Mag-dSPE. The obtained results demonstrated the higher extraction capacity of EDA@Mag-CNT Mag-dSPE with recoveries between 82.1 and 113 %. The limits of quantification (LOQs) for the steroid hormone were between 0.020 and 1.00 ng/L. The developed method had been successfully applied to 60 river water samples, and it was confirmed that EDA@Mag-CNT Mag-dSPE was a highly effective extraction method for the steroid hormone analyses.
Mostrar más [+] Menos [-]Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland
2016
Migaszewski, Zdzisław M. | Gałuszka, Agnieszka | Dołęgowska, Sabina
A detailed hydrogeochemical study was performed in the Wiśniówka mining area (south-central Poland). This covered three acid pit bodies, historic tailings acid ponds, acid pools, and additionally two neighboring rivers. All these acid mine drainage (AMD) waters are characterized by the pH in the range of 1.7 (pools) to 3.5 (tailings ponds). The most interesting is the Podwiśniówka acid pit lake that shows a very low pH (2.2–2.5) and very high concentrations of SO₄ ²⁻ (2720–5460 mg/L), Fe (545–1140 mg/L), Al (86.2 mg/L), As (9603–24,883 μg/L), Co (1317–3458 μg/L), Cr (753–2047 μg/L), Cu (6307–18,879 μg/L), Ni (1168–3127 μg/L), and rare earth element (REE) (589–1341 μg/L). In addition, seeps that drain the Podwiśniówka mine tailings and partly aggregate piles form strong acid pools in the mining area. Along with these pools, in which As and REE contents reach 369,726 and 6288 μg/L, respectively, these waters are among the most distinctive As- and REE-rich AMD surface waters across the world. It is noteworthy that the Podwiśniówka acid pit lake and Wiśniówka Duża acid pit sump exhibit different element signatures and REE concentration patterns normalized to North American Composite Shale (NASC): the Podwiśniówka acid pit lake always shows a characteristic roof-shaped medium REE (MREE) profile with distinct enrichments in Gd, Eu, and Tb whereas the other one displays a step-shaped heavy REE (HREE) profile with positive Tb and Gd anomalies. The REE undergo fractionation during weathering and the subsequent leaching of dissolved and suspended fractions from rocks to acid water bodies where these and other elements are further fractionated by geochemical processes. This study shows that the individual REE have greater affinities for Mn, HREE for Fe and SO₄ ²⁻, and only La and Ce for Al. This specific water geochemistry has enabled us to (i) pinpoint the location of AMD “hot spots” originated from quartzite mining and processing operations conducted by current and previous mining companies, (ii) predict the directions and effects of future strip mining for quartzites in the Wiśniówka Duża and Podwiśniówka open pits, and (iii) evaluate the potential impact of mining and processing effluents on the quality of rivers.
Mostrar más [+] Menos [-]Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology
2016
Samarghandi, Mohammad Reza | Khiadani, Mehdi | Foroughi, Maryam | Zolghadr Nasab, Hasan
Adsorption by activated alumina is considered to be one of the most practiced methods for defluoridation of freshwater. This study was conducted, therefore, to investigate the effect of natural organic matters (NOMs) on the removal of fluoride by activated alumina using response surface methodology. To the authors’ knowledge, this has not been previously investigated. Physico-chemical characterization of the alumina was determined by scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffractometer (XRD). Response surface methodology (RSM) was applied to evaluate the effect of single and combined parameters on the independent variables such as the initial concentration of fluoride, NOMs, and pH on the process. The results revealed that while presence of NOM and increase of pH enhance fluoride adsorption on the activated alumina, initial concentration of fluoride has an adverse effect on the efficiency. The experimental data were analyzed and found to be accurately and reliably fitted to a second-order polynomial model. Under optimum removal condition (fluoride concentration 20 mg/L, NOM concentration 20 mg/L, and pH 7) with a desirability value of 0.93 and fluoride removal efficiency of 80.6 %, no significant difference was noticed with the previously reported sequence of the co-exiting ion affinity to activated alumina for fluoride removal. Moreover, aluminum residual was found to be below the recommended value by the guideline for drinking water. Also, the increase of fluoride adsorption on the activated alumina, as NOM concentrations increase, could be due to the complexation between fluoride and adsorbed NOM.
Mostrar más [+] Menos [-]Catalytic ozonation of sulfamethoxazole by composite iron-manganese silicate oxide: cooperation mechanism between adsorption and catalytic reaction
2016
Gao, Guoying | Kang, Jing | Shen, Jimin | Chen, Zhonglin | Zhu, Wei
A systematic investigation of the cooperation mechanism between adsorption and catalytic reaction during the catalytic ozonation of sulfamethoxazole (SMX) by composite iron-manganese silicate oxide (FMSO) was carried out in this work. Results showed that the total organic carbon (TOC) removal increased significantly from 27 % (sole-ozonation) to 79.8 % (FMSO catalytic ozonation). The presence of FMSO in the ozonation process effectively enhanced the ozone utilization efficiency and accelerated the transformation of ozone into hydroxyl radicals. The latter result was verified by the indirect method, using NaHSO₃ as the reductor, and the direct electron spin resonance (ESR) determination technology. The adsorption of SMX on FMSO was minimal (1.8 %). However, ozone rapidly converted SMX into various intermediates, which was exhibited by the much higher adsorption affinity on the surface of FMSO than that of SMX. The accumulation of various intermediates on the FMSO surface also increased their contact probability with the ·OH radicals generated by the ozone decomposition. The continuous interaction of intermediates with ·OH radicals could further promote the benign cycling of the release of adsorption sites and the succeeding adsorption/decomposition of ozone and intermediates on FMSO. This could be another reason for the higher and faster TOC removal rate.
Mostrar más [+] Menos [-]Short residence duration was associated with asthma but not cognitive function in the elderly: USA NHANES, 2001–2002
2016
Shiue, Ivy
There has been a growing interest in how the built environment affects health and well-being. Housing characteristics are associated with human health while environmental chemicals could have mediated the effects. However, it is unclear if and how residence duration might have a role in health and well-being. Therefore, the aim of the present study was to investigate the associations among residence duration, common chronic diseases, and cognitive function in older adults in a national and population-based setting. Data were extracted from the US National Health and Nutrition Examination Survey, 2001–2002, with assessment information on demographics, lifestyle factors, housing characteristics, self-reported common chronic diseases, and cognitive function by using the digit symbol substitution test from the Wechsler Adult Intelligence Scale (a measurement of attention and psychomotor speed). Statistical analyses including the chi-square test, t test, and survey-weighted general linear modeling and logistic regression modeling were performed. Residence duration was significantly associated with risk of asthma but not with other chronic disease, showing a longer stay in the same housing leading to lower risk of asthma (OR 0.43, 95%CI 0.27–0.69, P = 0.002) among the American older adults. However, having asthma was not associated with cognitive function decline. In conclusion, residence duration was found to be associated with risk of asthma but not cognitive function. Future research examining the relationship of residence duration and cognitive tests by other domains of cognitive function following asthma episodes would be suggested. For practice and policy implications, familiarity with the housing environment might help with lessening respiratory symptoms.
Mostrar más [+] Menos [-]Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil
2016
Ramzani, Pia Muhammad Adnan | Khan, Waqas-ud-Din | Iqbal, Muhammad | Kausar, Salma | Ali, Shafaqat | Rizwan, Muhammad | Virk, Zaheer Abbas
Rice (Oryza sativa L.) is one of the main staple food crops which is inherently low in micronutrients, especially iron (Fe), and can lead to severe Fe deficiency in populations having higher consumption of rice. Soils polluted with nickel (Ni) can cause toxicity to rice and decreased Fe uptake by rice plants. We investigated the potential role of biochar (BC) and gravel sludge (GS), alone and in combination, for in situ immobilization of Ni in an industrially Ni-contaminated soil at original and sulfur-amended altered soil pH. Our further aim was to increase Fe bioavailability to rice plants by the exogenous application of ferrous sulfate to the Ni-immobilized soil. Application of the mixture of both amendments reduced grain Ni concentration, phytate, Phytate/Fe, Phyt/Zn molar ratios, and soil DTPA-extractable Ni. In addition, the amendment mixture increased 70 % Fe and 229 % ferritin concentrations in rice grains grown in the soil at original pH. The Fe and ferritin concentrations in S-treated soil was increased up to 113 and 383 % relative to control respectively. This enhanced Fe concentration and corresponding ferritin in rice grains can be attributed to Ni/Fe antagonism where Ni has been immobilized by GS and BC mixture. This proposed technique can be used to enhance growth, yield, and Fe biofortification in rice by reducing soil pH while in parallel in situ immobilizing Ni in polluted soil.
Mostrar más [+] Menos [-]Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels
2016
Iswarya, V. | Manivannan, J. | De, Arpita | Paul, Subhabrata | Roy, Rajdeep | Johnson, J. B. | Kundu, Rita | Cantiracēkaran̲, Nā. | Mukherjee, Anita | Mukherjee, Amitava
In the present study, the toxicity of gold nanoparticles (Au NPs) was evaluated on various trophic organisms. Bacteria, algae, cell line, and mice were used as models representing different trophic levels. Two different sizes (CIT₃₀ and CIT₄₀) and surface-capped (CIT₃₀–polyvinyl pyrrolidone (PVP)-capped) Au NPs were selected. CIT₃₀ Au NP aggregated more rapidly than CIT₄₀ Au NP, while an additional capping of PVP (CIT₃₀–PVP capped Au NP) was found to enhance its stability in sterile lake water medium. Interestingly, all the forms of NPs evaluated were stable in the cell culture medium during the exposure period. Size- and dose-dependent cytotoxicities were observed in both bacteria and algae, with a strong dependence on reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) release. CIT₃₀–PVP capped Au NP showed a significant decrease in toxicity compared to CIT₃₀ Au NP in bacteria and algae. In the SiHa cell line, dose- and exposure-dependent decline in cell viability were noted for all three types of Au NPs. In mice, the induction of DNA damage was size and dose dependent, and surface functionalization with PVP reduced the toxic effects of CIT₃₀ Au NP. The exposure to CIT₃₀, CIT₄₀, and CIT₃₀–PVP capped Au NPs caused an alteration of the oxidative stress-related endpoints in mice hepatocytes. The toxic effects of the gold nanoparticles were found to vary in diverse test systems, accentuating the importance of size and surface functionalization at different trophic levels.
Mostrar más [+] Menos [-]Benchmark dose for cadmium exposure and elevated N-acetyl-β-D-glucosaminidase: a meta-analysis
2016
Liu, CuiXia | Li, YuBiao | Zhu, ChunShui | Dong, ZhaoMin | Zhang, Kun | Zhao, Yanbin | Xu, YiLu
Cadmium (Cd) is a well-known nephrotoxic contaminant, and N-acetyl-β-D-glucosaminidase (NAG) is considered to be an early and sensitive marker of tubular dysfunction. The link between Cd exposure and NAG level enables us to derive the benchmark dose (BMD) of Cd. Although several reports have already documented urinary Cd (UCd)-NAG relationships and BMD estimations, high heterogeneities arise due to the sub-populations (age, gender, and ethnicity) and BMD methodologies being employed. To clarify the influences that these variables exert, firstly, a random effect meta-analysis was performed in this study to correlate the UCd and NAG based on 92 datasets collected from 30 publications. Later, this established correlation (Ln(NAG) = 0.51 × Ln(UCd) + 0.83) was applied to derive the UCd BMD₅ of 1.76 μg/g creatinine and 95 % lower confidence limit of BMD₅ (BMDL₅) of 1.67 μg/g creatinine. While the regressions for different age groups and genders differed slightly, it is age and not gender that significantly affects BMD estimations. Ethnic differences may require further investigation given that limited data is currently available. Based on a comprehensive and systematic literature review, this study is a new attempt to quantify the UCd-NAG link and estimate BMD.
Mostrar más [+] Menos [-]