Refinar búsqueda
Resultados 301-310 de 5,143
Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond
2018
Yang, Zhen | Buley, Riley P. | Fernandez-Figueroa, Edna G. | Barros, Mario U.G. | Rajendran, Soorya | Wilson, Alan E.
Controlling blooms of toxigenic phytoplankton, including cyanobacteria, is a high priority for managers of aquatic systems that are used for drinking water, recreation, and aquaculture production. Although a variety of treatment approaches exist, hydrogen peroxide (H2O2) has the potential to be an effective and ecofriendly algaecide given that this compound may select against cyanobacteria while not producing harmful residues. To broadly evaluate the effectiveness of H2O2 on toxigenic phytoplankton, we tested multiple concentrations of H2O2 on (1) four cyanobacterial cultures, including filamentous Anabaena, Cylindrospermopsis, and Planktothrix, and unicellular Microcystis, in a 5-day laboratory experiment and (2) a dense cyanobacterial bloom in a 7-day field experiment conducted in a nutrient-rich aquaculture pond. In the laboratory experiment, half-maximal effective concentrations (EC50) were similar for Anabaena, Cylindrospermopsis, and Planktothrix (average EC50 = 0.41 mg L−1) but were ∼10x lower than observed for Microcystis (EC50 = 5.06 mg L−1). Results from a field experiment in an aquaculture pond showed that ≥1.3 and ≥ 6.7 mg L−1 of H2O2 effectively eliminated Planktothrix and Microcystis, respectively. Moreover, 6.7 mg L−1 of H2O2 reduced microcystin and enhanced phytoplankton diversity, while causing relatively small negative effects on zooplankton abundance. In contrast, 20 mg L−1 of H2O2 showed the greatest negative effect on zooplankton. Our results demonstrate that H2O2 can be an effective, rapid algaecide for controlling toxigenic cyanobacteria when properly dosed.
Mostrar más [+] Menos [-]Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system
2018
Bisig, Christoph | Comte, Pierre | Güdel, Martin | Czerwiński, Janusz | Mayer, Andreas | Müller, Loretta | Petri-Fink, Alke | Rothen-Rutishauser, Barbara
Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles.The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions.Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects.After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure.The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures.
Mostrar más [+] Menos [-]δ15N and nutrient stoichiometry of water, aquatic organisms and environmental implications in Taihu lake, China
2018
Tao, Yu | Dan, Dai | Kun, Lei | Chengda, He | Haibing, Cong | Guo, Fu | Qiujin, Xu | Fuhong, Sun | Fengchang, Wu
Nitrogen pollution has become a worldwide problem and the source identification is important for the development of pertinent control measures. In this study, isotope end members (rain, nitrogen fertilizer, untreated/treated sewage), and samples (river water discharging to Taihu lake, lake water, aquatic organisms of different trophic levels) were taken during 2010–2015 to examine their δ15N values and nutrient stoichiometry. Results indicated that phytoplankton (primary producers), which directly take up and incorporate N from the lake water, had a similar δ15N value (14.1‰ ± 3.2) to the end member of treated sewage (14.0‰ ± 7.5), and the most frequently observed δ15N value in the lake water was 8–12‰, both indicating the dominant impact of the sewage discharge. Relationship analysis between N isotope value of nitrate and nitrate concentration indicated that different N cycling existed between the algae-dominated northwest lake (NW) and the macrophyte-dominated southeast lake (SE), which is a result of both impacts of river inputs and denitrification. Our nutrient stoichiometry analysis showed that the lake water had a significantly higher N:P ratio than that of algae (p < 0.05), suggesting that N is available in excess relative to the amount demanded by the algae. The long-term trend of the socio-economic development in the watershed further confirmed that the rapid population increase and urbanization have resulted in a great change in the N loading and source proportion. We suggest that although P control is necessary in terms of eutrophication control, N pollution control is urgent for the water quality and ecological recovery for Taihu lake.
Mostrar más [+] Menos [-]Assessment of airborne polycyclic aromatic hydrocarbons in a megacity of South China: Spatiotemporal variability, indoor-outdoor interplay and potential human health risk
2018
Hu, Yuan-Jie | Bao, Lian-Jun | Huang, Chun-Li | Li, Shao-Meng | Liu, Peter | Zeng, E. Y. (Eddy Y.)
Although a number of studies have assessed the occurrence of atmospheric polycyclic aromatic hydrocarbons (PAHs) in indoor environment, few studies have systemically examined the indoor-outdoor interplay of size-dependent particulate PAHs and potential health risk based on daily lifestyles. In the present study, size-dependent particle and gaseous samples were collected both indoors and outdoors within selected schools, offices and residences located in three districts of Guangzhou, China with different urbanization levels during the dry and wet weather seasons. Results from measurements of PAHs showed that higher total PAH concentrations occurred in residential areas than in other settings and in indoor than in outdoor environments. Compositional profiles and size distribution patterns of particle-bound PAHs were similar indoors and outdoors, predominated by 4-and 5-ring PAHs and the 0.56–1.0 μm particle fraction. Statistical analyses indicated that outdoor sources may have contributed to 38–99% and 62–100% of the variations for indoor particle-bound and gaseous PAH concentrations, respectively. Incremental life cancer risk (ILCR) from human exposure to indoor and outdoor PAHs based on different lifestyles followed the order of adults > children > adolescents > seniors. All average ILCR values for four age groups were below the lower limit of the Safe Acceptable Range (10−6). In addition, the ILCR value for adults (average: 7.2 × 10−7; 95% CI: 5.4 × 10−8‒2.5 × 10−6), estimated from outdoor air PAH levels with 24-h exposure time, was significantly higher than our assessment results (average: 5.9 × 10−7; 95% CI: 6.3 × 10−8‒1.9 × 10−6), suggesting the significance of assessing human inhalation exposure risks of indoor and outdoor PAHs in urban air based on daily lifestyles.
Mostrar más [+] Menos [-]Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid
2018
Li, Kai | Song, Xin | Zhu, Tingting | Wang, Chi | Sun, Xin | Ning, Ping | Tang, Lihong
The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H2O and H2SO4 have been studied by theoretical calculations. The addition of H2SO4 could increase the enthalpy change (ΔH<0) and decrease relative energy of products (relative energy<0), resulting in hydrolysis reaction changed from an endothermic reaction to an exothermic reaction. Further, H2SO4 decreases the energy barrier by 5.25 kcal/mol, and it enhances the catalytic hydrolysis through the hydrogen transfer effect. The (COS + H2SO4-H2O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H2O and H2SO4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H2SO4-H2O < COS + H2O + H2SO4-H2O < COS + H2O+(H2SO4)2. Kinetic simulations show that the addition of H2SO4 can increase the reaction rate constants. Consequently, adding an appropriate amount of sulfuric acid promotes the catalytic hydrolysis of COS both kinetically and thermodynamically.
Mostrar más [+] Menos [-]Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China
2018
Meng, Jing | Wang, Tieyu | Song, Shuai | Wang, Pei | Li, Qifeng | Zhou, Yunqiao | Lü, Yonglong
With the shift of fluorine chemical industry from developed countries to China and increasing demand for fluorine chemical products, occurrence of perfluoroalkyl substances (PFASs) in production and application areas has attracted more attention. In this study, 153 soil samples were collected from 21 cities along the urbanizing coastal area of the Bohai and Yellow Seas. PFASs in this area were relatively higher, compared with other study areas. The concentrations ranged from 2.76 to 64.0 ng g−1, and those in most sites were between 2.76 and 13.9 ng g−1, with a predominance of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Among the 21 coastal cities, contaminations of PFASs in Zibo, Nantong and Binzhou were elevated, which was likely affected by local fluorine chemical plants, equipment manufacturing and chemical industry, respectively. The total emissions of PFOA and PFOS were similar, with amount of 4431 kg and 4335 kg, respectively. Atmospheric deposition was the largest source, accounting for 93.2% of total PFOA and 69.6% of PFOS, respectively. In addition, due to application of aqueous film-forming foams (AFFFs) and sulfluramid, disposal of sewage sludge and stacking of solid waste, emission of PFOA and PFOS to soil was 1617 kg, accounting for 9.29% of the whole China. In general, pollution in Jiangsu, Shandong and Tianjin was more serious than those in Liaoning and Hebei, which was consistent with industrialization level and size of industrial sectors emitting PFASs.
Mostrar más [+] Menos [-]Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization
2018
Gomes, Marcelo Pedrosa | de Brito, Júlio César Moreira | Carvalho Carneiro, Marília Mércia Lima | Ribeiro da Cunha, Mariem Rodrigues | Garcia, Queila Souza | Figueredo, Cleber Cunha
We investigated the ability of the aquatic fern Azolla to take up ciprofloxacin (Cipro), as well as the effects of that antibiotic on the N-fixing process in plants grown in medium deprived (-N) or provided (+N) with nitrogen (N). Azolla was seen to accumulate Cipro at concentrations greater than 160 μg g⁻¹ dry weight when cultivated in 3.05 mg Cipro l⁻¹, indicating it as a candidate for Cipro recovery from water. Although Cipro was not seen to interfere with the heterocyst/vegetative cell ratios, the antibiotic promoted changes with carbon and nitrogen metabolism in plants. Decreased photosynthesis and nitrogenase activity, and altered plant's amino acid profile, with decreases in cell N concentrations, were observed. The removal of N from the growth medium accentuated the deleterious effects of Cipro, resulting in lower photosynthesis, N-fixation, and assimilation rates, and increased hydrogen peroxide accumulation. Our results shown that Cipro may constrain the use of Azolla as a biofertilizer species due to its interference with nitrogen fixation processes.
Mostrar más [+] Menos [-]Field and laboratory evaluation of DGT for predicting metal bioaccumulation and toxicity in the freshwater bivalve Hyridella australis exposed to contaminated sediments
2018
Amato, Elvio D. | Marasinghe Wadige, Chamani P.M. | Taylor, Anne M. | Maher, William A. | Simpson, Stuart L. | Jolley, Dianne F.
The diffusive gradients in thin films (DGT) technique has shown to be a useful tool for predicting metal bioavailability and toxicity in sediments, however, links between DGT measurements and biological responses have often relied on laboratory-based exposures and further field evaluations are required. In this study, DGT probes were deployed in metal-contaminated (Cd, Pb, Zn) sediments to evaluate relationships between bioaccumulation by the freshwater bivalve Hyridella australis and DGT-metal fluxes under both laboratory and field conditions. The DGT-metal flux measured across the sediment/water interface (±1 cm) was useful for predicting significant cadmium and zinc bioaccumulation, irrespective of the type of sediment and exposure. A greater DGT-Zn flux measured in the field was consistent with significantly higher zinc bioaccumulation, highlighting the importance of performing metal bioavailability assessments in situ. In addition, DGT fluxes were useful for predicting the potential risk of sub-lethal toxicity (i.e., lipid peroxidation and lysosomal membrane damage). Due to its ability to account for multiple metal exposures, DGT better predicted bioaccumulation and toxicity than particulate metal concentrations in sediments. These results provide further evidence supporting the applicability of the DGT technique as a monitoring tool for sediment quality assessment.
Mostrar más [+] Menos [-]NOx promotion of SO2 conversion to sulfate: An important mechanism for the occurrence of heavy haze during winter in Beijing
2018
Ma, Jinzhu | Chu, Biwu | Liu, Jun | Liu, Yongchun | Zhang, Hongxing | He, Hong
In this study, concentrations of NOₓ, SO₂, O₃ and fine particles (PM₂.₅) were measured at three monitoring stations in Beijing during 2015. For extreme haze episodes during 25 Nov. - 3 Dec. 2015, observation data confirmed that high concentrations of NOₓ promoted the conversion of SO₂ to sulfate. Annual data confirmed that this is an important mechanism for the occurrence of heavy haze during winter in Beijing. Furthermore, in situ perturbation experiments in a potential aerosol mass (PAM) reactor were carried out at Shengtaizhongxin (STZX) station during both clean and polluted days. The concentrations of SO₄²⁻, NH₄⁺, NO₃⁻ and organic aerosol were positively related to the concentration of added NO₂. These results provide definitive evidence that NO₂ can promote the conversion of SO₂ to sulfate. At the same time, we found that NO₂ can promote the formation of NH₄⁺ and organic compounds in the aerosols. Our results illustrate that strengthened controls of nitrogen oxides is a key step in reducing the fine particles level in China.
Mostrar más [+] Menos [-]Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level
2018
Bour, Agathe | Avio, Carlo Giacomo | Gorbi, Stefania | Regoli, Francesco | Hylland, Ketil
The exponential production and use of plastics has generated increasing environmental release over the past decades, and microplastics (MPs) have been reported across all the oceans. Field studies have documented the occurrence of MPs in several species, but important knowledge gaps still remain. In the present study, we characterized the distribution of MPs in ten sediment-dwelling and epibenthic species representative of different habitat, feeding modes and trophic levels within the inner Oslofjord (Oslo, Norway), an area subjected to moderate anthropogenic pressures. Analysed species included fish, bivalves, echinoderms, crustaceans and polychaetes. MPs were present in all the species with a frequency up to 65% of positive individuals for some species. In most cases, 1 or 2 MPs were found per individual, but some organisms contained up to 7 particles. A total of 8 polymer typologies were identified, with PE and PP being the most common according to our extraction protocol. MP sizes ranged from 41 μm to lines as long as 9 mm. Our results indicate that occurrence of MPs in analysed biota is not influenced by organism habitat or trophic level, while characteristics and typology of polymers might be significantly affected by feeding mode of organisms.
Mostrar más [+] Menos [-]