Refinar búsqueda
Resultados 3011-3020 de 3,208
Diazotrophs-assisted phytoremediation of heavy metals: a novel approach Texto completo
2015
Ullah, Abid | Mushtaq, Hafsa | Ali, Hazrat | Munis, Muhammad Farooq Hussain | Javed, Muhammad Tariq | Chaudhary, Hassan Javed
Heavy metals, which have severe toxic effects on plants, animals, and human health, are serious pollutants of the modern world. Remediation of heavy metal pollution is utmost necessary. Among different approaches used for such remediation, phytoremediation is an emerging technology. Research is in progress to enhance the efficiency of this plant-based technology. In this regard, the role of rhizospheric and symbiotic microorganisms is important. It was assessed by enumeration of data from the current studies that efficiency of phytoremediation can be enhanced by assisting with diazotrophs. These bacteria are very beneficial because they bring metals to more bioavailable form by the processes of methylation, chelation, leaching, and redox reactions and the production of siderophores. Diazotrophs also posses growth-promoting traits including nitrogen fixation, phosphorous solubilization, phytohormones synthesis, siderophore production, and synthesis of ACC-deaminase which may facilitate plant growth and increase plant biomass, in turn facilitating phytoremediation technology. Thus, the aim of this review is to highlight the potential of diazotrophs in assisting phytoremediation of heavy metals in contaminated soils. The novel current assessment of literature suggests the winning combination of diazotroph with phytoremediation technology.
Mostrar más [+] Menos [-]Evaluation of the sensitivity to zinc of ciliates Euplotes vannus and Euplotes crassus and their naturally associated bacteria isolated from a polluted tropical bay Texto completo
2015
Bitencourt, José Augusto Pires | Pereira, Daniella C. | da Silva Neto, Inácio D. | Crapez, Mirian A. C.
The aim of this study was to evaluate the Zn sensitivity of Euplotes vannus, Euplotes crassus, and their naturally associated bacteria sampled from sediments in the northwest and east regions of Guanabara Bay. The unexposed ciliates and bacteria did not appear to be negatively affected by 96 h of assay. In the control group, E. vannus exhibited an increase in the biomass content from 2.3 × 10²to 2.3 × 10³ μg C cm⁻³between 0 and 96 h, and E. crassus increased up to 7.07 × 10² μg C cm⁻³at 48 h. The maximum biomass was pointed by E. crassus (1.33 × 10³ μg C cm⁻³) in the presence of 0.005 mg Zn L⁻¹and E. vannus was naturally associated bacteria (2.40 × 10⁻¹ μg C cm⁻³) in the presence of 1.0 mg Zn L⁻¹(96 h). The growth of E. vannus from the northwest region showed concentration-dependent manners, and it is more sensitive to zinc than E. crassus from the southeast. Naturally associated bacteria showed better adaptation to increasing concentrations of Zn, and the Dunnett test showed that previous environmental selection is important. These results show that new bioremediation tools are necessary.
Mostrar más [+] Menos [-]Health risk assessment of organochlorine pesticide exposure through dietary intake of vegetables grown in the periurban sites of Delhi, India Texto completo
2015
Chourasiya, Sapna | Khillare, P. S. | Jyethi, Darpa Saurav
The study investigated the levels of organochlorine pesticides (OCPs) in different types of vegetables grown in periurban area of National Capital Region (NCR), India. Vegetable sampling was carried out in winter and summer season of 2012. A total of 20 different OCPs were determined using gas chromatography (GC) assembled with electron capture detector (ECD). Obtained results showed that average levels of ∑₂₀OCP ranged from 83.8 ± 25.5 ng g⁻¹in smooth gourd to 222.4 ± 90.0 ng g⁻¹in cauliflower. The mean concentrations of different OCPs were observed in order of ∑HCH > ∑CHLs > drins > ∑endosulfan > ∑DDT in all vegetables except in brinjal and smooth gourd. Most of the OCP residues recorded in vegetable samples exceeded the maximum residue levels (MRLs) set by international and national regulatory agencies. Health risk assessment suggests that daily dietary OCP exposure via vegetable consumption was higher for children (mean value 4.25E−05) than adults (mean value 2.19E−05). The hazard quotient (HQ) and lifetime cancer risk (LCR) estimated from dietary exposure of these vegetables were above the acceptable limit and can be considered as a serious concern for Delhi population.
Mostrar más [+] Menos [-]Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil Texto completo
2015
Wu, Qihang | Leung, Jonathan Y. S. | Huang, Xuexia | Yao, Bo | Yuan, Xin | Ma, Jianhao | Guo, Shijia
Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil Texto completo
2015
Wu, Qihang | Leung, Jonathan Y. S. | Huang, Xuexia | Yao, Bo | Yuan, Xin | Ma, Jianhao | Guo, Shijia
Thallium (Tl) pollution in agricultural areas can pose hidden danger to humans, as food consumption is the key exposure pathway of Tl. Owing to the extreme toxicity of Tl, removal of Tl from soil becomes necessary to minimize the Tl-related health effects. Phytoremediation is a cost-effective method to remove heavy metals from soil, but not all plants are appropriate for this purpose. Here, the ability of Solanum nigrum L., commonly known as black nightshade, to remediate Tl-contaminated soil was evaluated. The accumulation of Tl in different organs of S. nigrum was measured under both field and greenhouse conditions. Additionally, the growth and maximal quantum efficiency of photosystem II (Fv/Fm) under different Tl concentrations (1, 5, 10, 15, and 20 mg kg⁻¹) were examined after 4-month pot culture. Under both field and greenhouse conditions, Tl accumulated in S. nigrum was positively correlated with Tl concentration in the soil. Thallium mostly accumulated in the root, and bioconcentration factor was greater than 1, indicating the good capability of S. nigrum to extract Tl. Nonetheless, the growth and Fv/Fm of S. nigrum were reduced at high Tl concentration (>10 mg kg⁻¹). Given the good tolerance, fast growth, high accumulation, and global distribution, we propose that S. nigrum is a competent candidate to remediate moderately Tl-contaminated soil (<10 mg kg⁻¹) without causing far-reaching ecological consequences.
Mostrar más [+] Menos [-]Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil Texto completo
2015
Wu, Q. | Leung, J. | Huang, X. | Yao, B. | Yuan, X. | Ma, J. | Guo, S.
Thallium (Tl) pollution in agricultural areas can pose hidden danger to humans, as food consumption is the key exposure pathway of Tl. Owing to the extreme toxicity of Tl, removal of Tl from soil becomes necessary to minimize the Tl-related health effects. Phytoremediation is a cost-effective method to remove heavy metals from soil, but not all plants are appropriate for this purpose. Here, the ability of Solanum nigrum L., commonly known as black nightshade, to remediate Tl-contaminated soil was evaluated. The accumulation of Tl in different organs of S. nigrum was measured under both field and greenhouse conditions. Additionally, the growth and maximal quantum efficiency of photosystem II (Fv/Fm) under different Tl concentrations (1, 5, 10, 15, and 20 mg kg⁻¹) were examined after 4-month pot culture. Under both field and greenhouse conditions, Tl accumulated in S. nigrum was positively correlated with Tl concentration in the soil. Thallium mostly accumulated in the root, and bioconcentration factor was greater than 1, indicating the good capability of S. nigrum to extract Tl. Nonetheless, the growth and Fv/Fm of S. nigrum were reduced at high Tl concentration (>10 mg kg⁻¹). Given the good tolerance, fast growth, high accumulation, and global distribution, we propose that S. nigrum is a competent candidate to remediate moderately Tl-contaminated soil (<10 mg kg⁻¹) without causing far-reaching ecological consequences. | Qihang Wu, Jonathan Y.S. Leung, Xuexia Huang, Bo Yao, Xin Yuan, Jianhao Ma, Shijia Guo
Mostrar más [+] Menos [-]Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors Texto completo
2015
Velu, Kuppan | Elumalai, Devan | Hemalatha, Periaswamy | Janaki, Arumugam | Babu, Muthu | Hemavathi, Maduraiveeran | Kaleena, Patheri Kunyil
Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue.
Mostrar más [+] Menos [-]Changes in protein expression of pacific oyster Crassostrea gigas exposed in situ to urban sewage Texto completo
2015
Flores-Nunes, Fabrício | Gomes, Tania | Company, Rui | Moraes, Roberta R. M. | Sasaki, Silvio T. | Taniguchi, Satie | Bicego, Márcia C. | Melo, Cláudio M. R. | Bainy, Afonso C. D. | Bebianno, Maria J.
Changes in protein expression of pacific oyster Crassostrea gigas exposed in situ to urban sewage Texto completo
2015
Flores-Nunes, Fabrício | Gomes, Tania | Company, Rui | Moraes, Roberta R. M. | Sasaki, Silvio T. | Taniguchi, Satie | Bicego, Márcia C. | Melo, Cláudio M. R. | Bainy, Afonso C. D. | Bebianno, Maria J.
The composition and concentration of substances in urban effluents are complex and difficult to measure. These contaminants elicit biological responses in the exposed organisms. Proteomic analysis is a powerful tool in environmental toxicology by evidencing alterations in protein expression due to exposure to contaminants and by providing a useful framework for the development of new potential biomarkers. The aim of this study was to determine changes in protein expression signatures (PES) in the digestive gland of oysters Crassostrea gigas transplanted to two farming areas (LIS and RIB) and to one area contaminated by sanitary sewage (BUC) after 14 days of exposure. This species is one of the most cultivated molluscs in the world. The identified proteins are related to the cytoskeleton (CKAP5 and ACT2), ubiquitination pathway conjugation (UBE3C), G protein-coupled receptor and signal transduction (SVEP1), and cell cycle/division (CCNB3). CKAP5 showed higher expression in oysters kept at BUC in comparison with those kept at the farming areas, while ACT2, UBE3C, SVEP1, and CCNB3 were suppressed. The results suggest that these changes might lead to DNA damage, apoptosis, and interference with the immune system in oyster C. gigas exposed to sewage and give initial information on PES of C. gigas exposed to sanitary sewage, which can subsequently be useful in the development of more sensitive tools for biomonitoring coastal areas, particularly those devoted mainly to oyster farming activities.
Mostrar más [+] Menos [-]Changes in protein expression of pacific oyster Crassostrea gigas exposed in situ to urban sewage Texto completo
2015
Flores-Nunes, Fabrício | Gomes, Tânia | Company, Rui | Moraes, Roberta R. M. | Sasaki, Silvio T. | Taniguchi, Satie | Bicego, Márcia C. | Melo, Cláudio M. R. | Bainy, Afonso C. D. | Bebianno, Maria João
The composition and concentration of substances in urban effluents are complex and difficult to measure. These contaminants elicit biological responses in the exposed organisms. Proteomic analysis is a powerful tool in environmental toxicology by evidencing alterations in protein expression due to exposure to contaminants and by providing a useful framework for the development of new potential biomarkers. The aim of this study was to determine changes in protein expression signatures (PES) in the digestive gland of oysters Crassostrea gigas transplanted to two farming areas (LIS and RIB) and to one area contaminated by sanitary sewage (BUC) after 14 days of exposure. This species is one of the most cultivated molluscs in the world. The identified proteins are related to the cytoskeleton (CKAP5 and ACT2), ubiquitination pathway conjugation (UBE3C), G protein-coupled receptor and signal transduction (SVEP1), and cell cycle/division (CCNB3). CKAP5 showed higher expression in oysters kept at BUC in comparison with those kept at the farming areas, while ACT2, UBE3C, SVEP1, and CCNB3 were suppressed. The results suggest that these changes might lead to DNA damage, apoptosis, and interference with the immune system in oyster C. gigas exposed to sewage and give initial information on PES of C. gigas exposed to sanitary sewage, which can subsequently be useful in the development of more sensitive tools for biomonitoring coastal areas, particularly those devoted mainly to oyster farming activities. | info:eu-repo/semantics/publishedVersion
Mostrar más [+] Menos [-]Evaluation of a permeable reactive barrier to capture and degrade hydrocarbon contaminants Texto completo
2015
Mumford, K. A. | Powell, S. M. | Rayner, J. L. | Hince, G. | Snape, I. | Stevens, G. W.
A permeable reactive barrier (PRB) was installed during 2005/2006 to intercept, capture and degrade a fuel spill at the Main Power House, Casey Station, Antarctica. Here, evaluation of the performance of the PRB is conducted via interpretation of total petroleum hydrocarbon (TPH) concentrations, degradation indices and most probable number (MPN) counts of total heterotroph and fuel degrading microbial populations. Results indicate that locations which contained the lowest TPH concentrations also exhibited the highest levels of degradation and numbers of fuel degrading microbes, based on the degradation indices and MPN methods selected. This provides insights to the most appropriate reactive materials for use in PRB’s in cold and nutrient-limited environments.
Mostrar más [+] Menos [-]The transfer and fate of Pb from sewage sludge amended soil in a multi-trophic food chain: a comparison with the labile elements Cd and Zn Texto completo
2015
Dar, Mudasir Irfan | Khan, Fareed Ahmad | Green, Iain D. | Naikoo, Mohd Irfan
The contamination of agroecosystems due to the presence of trace elements in commonly used agricultural materials is a serious issue. The most contaminated material is usually sewage sludge, and the sustainable use of this material within agriculture is a major concern. This study addresses a key issue in this respect, the fate of trace metals applied to soil in food chains. The work particularly addresses the transfer of Pb, which is an understudied element in this respect, and compares the transfer of Pb with two of the most labile metals, Cd and Zn. The transfer of these elements was determined from sludge-amended soils in a food chain consisting of Indian mustard (Brassica juncea), the mustard aphid (Lipaphis erysimi) and a predatory beetle (Coccinella septempunctata). The soil was amended with sludge at rates of 0, 5, 10 and 20 % (w/w). Results showed that Cd was readily transferred through the food chain until the predator trophic level. Zn was the most readily transferred element in the lower trophic levels, but transfer to aphids was effectively restricted by the plant regulating shoot concentration. Pb had the lowest level of transfer from soil to shoot and exhibited particular retention in the roots. Nevertheless, Pb concentrations were significantly increased by sludge amendment in aphids, and Pb was increasingly transferred to ladybirds as levels increased. The potential for Pb to cause secondary toxicity to organisms in higher trophic levels may have therefore been underestimated.
Mostrar más [+] Menos [-]Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution Texto completo
2015
Chand, Piar | Pakade, Yogesh B.
Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L⁻¹) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g⁻¹ for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.
Mostrar más [+] Menos [-]Influence of microbubble in physical cleaning of MF membrane process for wastewater reuse Texto completo
2015
Lee, Eui-Jong | Kim, Yŏng-hun | Kim, Hyŏng-su | Jang, Am
Currently, there is a growing emphasis on wastewater reclamation and reuse all over the world due to restricted water resources. Among a variety of wastewater reuse technologies, the use of microfiltration membranes (MF) is one of the popular processes because it has the ability to successfully eliminate particulates and colloidal matters. However, successful fouling control is not easy because effluents from the activated sludge process still contain small particulates and colloidal matters such as extracellular polymeric substance (EPS) and soluble microbial products (SMP). On the other hand, microbubbles have advantageous properties compared to common bubbles, but there hasn’t been reporting of the use of microbubbles in physical cleaning instead of aeration. Encouraging results were obtained herein through the application of microbubbles for physical cleaning. In evaluation of the cleaning efficiency, the efficiency of microbubbles was observed to be twice as high as that of aeration, except during the course of the initial 30 min. Total organic carbon (TOC) concentration of the membrane tank after treatment with microbubbles was more than twice as high as that after aeration for physical cleaning. The membrane cleaned with microbubbles also had the smoothest surface, with a roughness of 42.5 nm. In addition, microbubbles were found to effectively remove EPS and make the structure of the gel layer loose. In particular, the microbubbles had the ability to remove proteins through the effect of pyrolytic decomposition. Therefore, in FT-IR spectra of the membrane surfaces taken before and after physical cleaning, while each treatment showed similar peak positions, the peak values of the membrane treated with microbubbles were the lowest. Through various analyses, it was confirmed that microbubbles can remove foulants on the gel layer in spite of their very low shear force. This means that microbubble cleaning has full potential for use as a physical cleaning method in the wastewater reclamation process.
Mostrar más [+] Menos [-]