Refinar búsqueda
Resultados 3041-3050 de 4,033
Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana
2016
Kumar, Muthukannan Satheesh | Kabra, Akhil N. | Min, Booki | El-Dalatony, Marwa M. | Xiong, Jiuqiang | Thajuddin, Nooruddin | Lee, Dae Sung | Jeon, Byong-Hun
The effect of insecticides (acephate and imidacloprid) on a freshwater microalga Chlamydomonas mexicana was investigated with respect to photosynthetic pigments, carbohydrate and protein contents, fatty acids composition and induction of stress indicators including proline, superoxide dismutase (SOD) and catalase (CAT). C. mexicana was cultivated with 1, 5, 10, 15, 20 and 25 mg L⁻¹ of acephate and imidacloprid. The microalga growth increased with increasing concentrations of both insecticides up to 15 mg L⁻¹, beyond which the growth declined compared to control condition (without insecticides). C. mexicana cultivated with 15 mg L⁻¹ of both insecticides for 12 days was used for further analysis. The accumulation of photosynthetic pigments (chlorophyll and carotenoids), carbohydrates and protein was decreased in the presence of both insecticides. Acephate and imidacloprid induced the activities of superoxide dismutase (SOD) and catalase (CAT) and increased the concentration of proline in the microalga, which play a defensive role against various environmental stresses. Fatty acid analysis revealed that the fraction of polyunsaturated fatty acids decreased on exposure to both insecticides. C. mexicana also promoted 25 and 21 % removal of acephate and imidacloprid, respectively. The biochemical changes in C. mexicana on exposure to acephate and imidacloprid indicate that the microalga undergoes an adaptive change in response to the insecticide-induced oxidative stress.
Mostrar más [+] Menos [-]A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater
2016
Han, Lu | Qian, Linbo | Yan, Jingchun | Liu, Rongqin | Du, Yihua | Chen, Mengfang
In order to promote the risk-based strategy in the investigation, assessment, and remediation of Chinese brownfield sites, the Health and Environmental Risk Assessment (HERA) software was developed. It is vital to validate the HERA model and compare the inter-model differences of HERA model against other available risk assessment tools. This paper discusses the similarities and differences between the Risk-Based Corrective Action (RBCA) Tool Kit and the HERA model by evaluating the health risk of organic contaminated groundwater sources for a chemical works in China for the first time. Consequently, the HERA and RBCA models yielded the identical results for Site-Specific Assessment Criteria (SSAC) under the commercial redevelopment. However, the HERA estimated more conservative and stringent SSACs under the residential scenario based on the different exposure calculations. The inhalation of indoor vapors was the most predominated exposure pathway for all the volatile organic compounds (VOCs) determined using the RBCA and HERA models. According to the HERA model, inhalation of chloroform may cause the highest unacceptable carcinogenic risk at 2.31 × 10⁻³ under the residential scenario. Therefore, it is recommended that a risk-based remedial strategy be developed to ensure the safe and sustainable redevelopment of the site.
Mostrar más [+] Menos [-]PCBs attenuation and abundance of Dehalococcoides spp., bphC, CheA, and flic genes in typical polychlorinated biphenyl-polluted soil under floody and dry soil conditions
2016
Hashmi, Muhammad Zaffar | Qin, Zhihui | Yao, Xiaoyan | Ahmed, Zulkifl | Xiaomei, Su | Shen, Chaofeng | Tang, Xianjin
This study investigates PCBs attenuation and the abundance of active polychlorinated-degrading Dehalococcoides spp. biphenyl dioxygenase (bphC), chemotaxis (CheA), and flagellum (flic) genes in floody and dry soil conditions polluted with polychlorinated biphenyls. The results revealed that total PCBs, high chlorinated PCBs (>4 cl), and less chlorinated PCBs (<4 cl) decreased with the passage of time in floody and dry soil conditions. The reduction of total PCBs (13.87 %) and less chlorinated PCBs (15.39 %) was more in dry soil than floody soil, while high chlorinated PCBs showed more reduction in floody soil (8.06 %) than dry soil. Dehaloccoides spp., bphC, CheA, and flic genes indicated temporal dynamics in abundance in floody and dry soil conditions. The highest abundance was 1.6 × 10⁹, 3.7 × 10⁴, and 3.6 × 10² copies in floody and 1.6 × 10⁴ copies in dry soil for Dehalococcoides spp., bphC, CheA, and flic, respectively. Multivariate statistics (RDA) revealed that Dehaloccoides spp. were positively influenced by the higher chlorinated PCBs and soil physical properties, CheA gene with floody soil, flic gene with total PCBs and less chlorinated PCBs, and bphC gene was affected with moisture contents and less chlorinated PCBs. This study provides new insight in the attenuation of PCBs and the abundance of active Dehalococcoides spp. and genes in PCBs polluted soil under floody and dry soil conditions.
Mostrar más [+] Menos [-]Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum
2016
Bedekar, Priyanka A. | Bhalkar, Bhumika N. | Patil, Swapnil M. | Govindwar, Sanjay P.
Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L⁻¹) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer’s Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.
Mostrar más [+] Menos [-]Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters
2016
Henryk, Kołoczek | Jarosław, Chwastowski | Witold, Żukowski
Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95 % for fiber and 92 % for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829–834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.
Mostrar más [+] Menos [-]Mobility of as, Cu, Cr, and Zn from tailings covered with sealing materials using alkaline industrial residues: a comparison between two leaching methods
2016
Jia, Yu | Maurice, Christian | Öhlander, Björn
Different alkaline residue materials (fly ash, green liquor dregs, and lime mud) generated from the pulp and paper industry as sealing materials were evaluated to cover aged mine waste tailings (<1 % sulfur content, primarily pyrite). The mobility of four selected trace elements (Cr, Cu, Zn, and As) was compared based on batch and column leaching studies to assess the effectiveness of these alkaline materials as sealing agents. Based on the leaching results, Cr, Cu, and Zn were immobilized by the alkaline amendments. In the amended tailings in the batch system only As dramatically exceeded the limit values at L/S 10 L/kg. The leaching results showed similar patterns to the batch results, though leached Cr, Cu, and Zn showed higher levels in the column tests than in the batch tests. However, when the columns were compared with the batches, the trend for Cu was opposite for the unamended tailings. By contrast, both batch and column results showed that the amendment caused mobilization of As compared with the unamended tailings in the ash-amended tailings. The amount of As released was greatest in the ash column and decreased from the dregs to the lime columns. The leaching of As at high levels can be a potential problem whenever alkaline materials (especially for fly ash) are used as sealing materials over tailings. The column test was considered by the authors to be a more informative method in remediation of the aged tailings with low sulfur content, since it mimics better actual situation in a field.
Mostrar más [+] Menos [-]No tillage combined with crop rotation improves soil microbial community composition and metabolic activity
2016
Sun, Bingjie | Jia, Shuxia | Zhang, Shixiu | McLaughlin, Neil B. | Liang, Aizhen | Chen, Xuewen | Liu, Siyi | Zhang, Xiaoping
Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0–5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0–5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.
Mostrar más [+] Menos [-]Exercise protects against PCB-induced inflammation and associated cardiovascular risk factors
2016
Murphy, Margaret O. | Petriello, Michael C. | Han, Sung Gu | Sunkara, Manjula | Morris, Andrew J. | Esser, Karyn | Hennig, Bernhard
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB-induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE⁻/⁻ mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12-week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 h before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12-week exercise intervention significantly reduced these proatherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs.
Mostrar más [+] Menos [-]Interaction of As and Sb in the hyperaccumulator Pteris vittata L.: changes in As and Sb speciation by XANES
2016
Wan, Xiaoming | Lei, Mei | Chen, Tongbin
Arsenic (As) and antimony (Sb) are chemical analogs that display similar characteristics in the environment. The As hyperaccumulator Pteris vittata L. is a potential As–Sb co-accumulating species. However, when this plant is exposed to different As and Sb speciation, the associated accumulating mechanisms and subsequent assimilation processes of As and Sb remain unclear. A 2-week hydroponic experiment was conducted by exposing P. vittata to single AsIII, AsV, SbIII, and SbV or the co-existence of AsIII and SbIII and AsV and SbV. P. vittata could co-accumulate As and Sb in the pinna (>1000 mg kg⁻¹) with high translocation (>1) of As and Sb from the root to the pinna. P. vittata displayed apparent preference to the trivalent speciation of As and Sb than to the pentavalent speciation. Under the single exposure of AsIII or SbIII, the pinna concentration of As and Sb was 84 and 765 % higher than that under the single exposure of AsV or SbV, respectively. Despite the provided As speciation, the main speciation of As in the root was AsV, whereas the main speciation of As in the pinna was AsIII. The Sb in the roots comprised SbV and SbIII when exposed to SbV but was exclusively SbIII when exposed to SbIII. The Sb in the pinna was a mixture of SbV and SbIII regardless of the provided Sb speciation. Compared with the single exposure of As, the co-existence of As and Sb increased the As concentration in the pinna of P. vittata by 50–66 %, accompanied by a significant increase in the AsIII percentage in the root. Compared with the single exposure of Sb, the co-existence of Sb and As also increased the Sb concentration in the pinna by 51–100 %, but no significant change in Sb speciation was found in P. vittata.
Mostrar más [+] Menos [-]Quinolone co-resistance in ESBL- or AmpC-producing Escherichia coli from an Indian urban aquatic environment and their public health implications
2016
Bajaj, Priyanka | Kanaujia, Pawan Kumar | Singh, Nambram Somendro | Sharma, Shalu | Kumar, Shakti | Virdi, Jugsharan Singh
Quinolone and β-lactam antibiotics constitute major mainstay of treatment against infections caused by pathogenic Escherichia coli. Presence of E. coli strains expressing co-resistance to both these antibiotic classes in urban aquatic environments which are consistently being used for various anthropogenic activities represents a serious public health concern. From a heterogeneous collection of 61 E. coli strains isolated from the river Yamuna traversing through the National Capital Territory of Delhi (India), those harboring bla CTX₋M₋₁₅ (n = 10) or bla CMY₋₄₂ (n = 2) were investigated for co-resistance to quinolones and the molecular mechanisms thereof. Resistance was primarily attributed to amino acid substitutions in the quinolone resistance-determining regions (QRDRs) of GyrA (S83L ± D87N) and ParC (S80I ± E84K). One of the E. coli strains, viz., IPE, also carried substitutions in GyrB and ParE at positions Ser492→Asn and Ser458→Ala, respectively. The phenotypically susceptible strains nevertheless carried plasmid-mediated quinolone resistance (PMQR) gene, viz., qnrS, which showed co-transfer to the recipient quinolone-sensitive E. coli J53 along with the genes encoding β-lactamases and led to increase in minimal inhibitory concentrations of quinolone antibiotics. To the best of our knowledge, this represents first report of molecular characterization of quinolone co-resistance in E. coli harboring genes for ESBLs or AmpC β-lactamases from a natural aquatic environment of India. The study warrants true appreciation of the potential of urban aquatic environments in the emergence and spread of multi-drug resistance and underscores the need to characterize resistance genetic elements vis-à-vis their public health implications, irrespective of apparent phenotypic resistance.
Mostrar más [+] Menos [-]