Refinar búsqueda
Resultados 311-320 de 6,548
Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeters: Effects of blended application of controlled-release and un-coated urea Texto completo
2020
Zheng, Wenkui | Wan, Yongshan | Li, Yuncong | Liu, Zhiguang | Chen, Jianqiu | Zhou, Hongyin | Gao, Yongxiang | Chen, Baocheng | Zhang, Min
Evaluation of the effectiveness of best management practices for reducing nitrate leaching in agricultural systems requires detailed water and nitrogen (N) budgets. A 3-year field experiment using 15 auto-weighing lysimeters was set up to quantify nitrate leaching, crop evapotranspiration (ET), and N and water use efficiencies within an intensive wheat-maize rotation system in the Northern China Plain. The lysimeter consists mainly of the following: (1) high-resolution weighing cells; (2) ceramic solution samplers for soil solutions collection; and (3) circular stainless steel leaching trays for collecting seepage water. Two N fertilizer types were applied at two rates (150 and 225 kg N hm⁻² for each crop) with no-N applied as the control. The N fertilizer types were monotypic un-coated urea and a blend product with controlled-release urea (CRU) and un-coated urea. The results indicate that when compared with un-coated urea at the same application rate, the blend product greatly improved water and N use efficiencies with significant increase in yields and crop ET as well as reduction of nitrate accumulation and leaching in the soil profile (p < 0.05). This was mostly because the blend product consistently supplied N to meet crop demands over the entire growth season. The study implied that effective best management practices to control nitrate leaching should be based on technically sound fertilization and irrigation schemes in terms of timing, rate, and fertilizer type to suit site specific conditions.
Mostrar más [+] Menos [-]Influence of colloidal Fe(OH)3 on the adsorption characteristics of strontium in porous media from a candidate high-level radioactive waste geological disposal site Texto completo
2020
Du, Can | Zuo, Rui | Chen, Minhua | Wang, Jinsheng | Liu, Xin | Liu, Li | Lin, Yuanhui
Colloids in groundwater or geological barriers generally play a key role in the migration of special nuclides. Adsorption characteristics of strontium were investigated on porous media in the presence of colloidal Fe(OH)₃ from the Beishan Site, the only high-level radioactive waste disposal site candidate in China. The effects of colloid amounts, solid contents, and pH were determined and studied by batch texts. The results revealed that the presence of colloidal Fe(OH)₃ in porous media contributed to promotion of the sorption effect, and the influencing factors had a significant impact on the adsorption process. The sorption ability increased with increasing colloid amount when the equilibrium time was approximately 10 h under an optimal solid-liquid ratio of 20 g L⁻¹. The sorption effect in alkaline conditions was better than that under acidic conditions. The sorption kinetics indicated that the strong chemical interaction and/or surface complexation contributed primarily to strontium sorption. The sorption isotherms and model fitting revealed that the sorption of strontium onto porous media in the presence of colloidal Fe(OH)₃ was a monolayer adsorption, and the presence of colloidal Fe(OH)₃ is an important factor that greatly influences the removal of strontium from aqueous solutions. These findings provide useful information for the treatment of strontium in radioactive waste disposal sites.
Mostrar más [+] Menos [-]Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient Texto completo
2020
Wang, Zhenhua | Wang, Chengzhang | Wang, Bin | Wang, Xin | Li, Jing | Wu, Jin | Liu, Lingli
Atmospheric pollution could significantly alter tree growth independently and synergistically with meteorological conditions. North China offers a natural experiment for studying how plant growth responds to air pollution under different meteorological conditions, where rapid economic growth has led to severe air pollution and climate changes increase drought stress. Using a single aspen clone (Populus euramericana Neva.) as a ‘phytometer’, we conducted three experiments to monitor aspen leaf photosynthesis and stem growth during in situ exposure to atmospheric pollutants along the urban-rural gradient around Beijing. We used stepwise model selection to select the best multiple linear model, and we used binned regression to estimate the effects of air pollutants, atmospheric moisture stress and their interactions on aspen leaf photosynthesis and growth. Our results indicated that ozone (O₃) and vapor pressure deficit (VPD) inhibited leaf photosynthesis and stem growth. The interactive effect of O₃ and VPD resulted in a synergistic response: as the concentration of O₃ increased, the negative impact of VPD on leaf photosynthesis and stem growth became more severe. We also found that nitrogen (N) deposition had a positive effect on stem growth, which may have been caused by an increase in canopy N uptake, although this hypothesis needs to be confirmed by further studies. The positive impact of aerosol loading may be due to diffuse radiation fertilization effects. Given the decline in aerosols and N deposition amidst increases in O₃ concentration and drought risk, the negative effects of atmospheric pollution on tree growth may be aggravated in North China. In addition, the interaction between O₃ and VPD may lead to a further reduction in ecosystem productivity.
Mostrar más [+] Menos [-]Mapping polychlorinated dibenzo-p-dioxins/dibenzofurans in soils around Pugu municipal dump site in Dar es Salaam, Tanzania: Implications on dermal and soil ingestion exposure for people in the peripheral Texto completo
2020
Pius, Christina | Koosaletse-Mswela, Pulane | Sichilongo, Kwenga | Dikinya, Oagile
Experimental data on the contribution of a dump site in Tanzania as a point source of the 17 possible congeners of PCDD/Fs to the environment is presented. Dry and wet season samples were collected around Pugu municipal dump site followed by GCxGC-TOFMS analysis. The dominant congeners were OctaCDD, 1,2,3,4,6,7,8-HepCDF; 1,2,3,4,6,7,8-HeptaCDD and 1,2,4,7-PeCDD. The concentrations of the congeners expressed as TEQ WHO₂₀₀₅ ranged from 11.69 to 48.97 pg/g with a mean of 29.44 pg/g for the dry season and TEQ WHO₂₀₀₅ 4.13–85.82 pg/g with a mean of 41.51 pg/g for the wet season. These levels were speculated high enough to accumulate in free-range chickens and cause harmful effects to humans that consumed them especially residents around Pugu dump site. Exposure of people to PCDD/Fs through dermal absorption and soil ingestion were estimated using the VLIER-HUMAAN Mathematical model. Exposure through dermal absorption was estimated to be 1.2 × 10⁻⁴ and 9.8 × 10⁻⁶ ng TEQ/kg day for children and adults respectively while through soil ingestion via consumption of contaminated foods and other sources was 0.0045 and 0.27 ng TEQ/kg day for children and adults respectively. These values however were well below the WHO tolerable daily intake. Generally, there was no significant variation for total PCDD/Fs in the dry and wet season (α = 0.08). Strong positive correlation (r = 0.94) between total PCDD/Fs and organic matter content was observed during the wet season.
Mostrar más [+] Menos [-]Synthesis of nano-magnetic MnFe2O4 to remove Cr(III) and Cr(VI) from aqueous solution: A comprehensive study Texto completo
2020
Eyvazi, Behzad | Jamshidi-Zanjani, Ahmad | Darban, Ahmad Khodadadi
The co-precipitation method was used to synthesize nano-magnetic adsorbent MnFe₂O₄ (nMFO), characterized through XRD, SEM, EDS, and BET techniques. The synthesized nMFO was used for hexavalent and trivalent chromium ions elimination from the aqueous phase. The optimum pH for the adsorption of Cr (VI) and Cr (III) was determined as 2 and 5, respectively. The chromium ions adsorption behavior was well interpreted through the pseudo-second order kinetics model. Furthermore, isotherm studies were conducted, and the obtained results indicated that Langmuir isotherm model could well justify the chromium ions adsorption process. Quick removal (less than 10 min) of both chromium ions and high removal efficiency were occurred using nMFO. The utmost adsorption capacity of trivalent and hexavalent chromium ions were determined as 39.6 and 34.84 mg g⁻¹, respectively. Thermodynamic studies on chromium adsorption revealed positive value for ΔH and negative value for ΔG, representing that chromium ions adsorption was an endothermic and spontaneous process. The multilinearity in the graphs of chromium ions adsorption was observed using intra-particle diffusion model. In this regard, the external mass transfer of chromium ions on synthesized nanoparticles was the important and controlling step in the adsorption process.
Mostrar más [+] Menos [-]Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques Texto completo
2020
Yan, Bofang | Isaure, Marie-Pierre | Mounicou, Sandra | Castillo-Michel, Hiram | De Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves
Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques Texto completo
2020
Yan, Bofang | Isaure, Marie-Pierre | Mounicou, Sandra | Castillo-Michel, Hiram | De Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves
Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
Mostrar más [+] Menos [-]Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques * Texto completo
2020
Yan, Bofang | Isaure, M.-P. | Mounicou, Sandra | Castillo-Michel, Hiram | de Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | European Synchrotron Radiation Facility (ESRF) | CADMIGRAIN project | AQUITRACE project | ANR-15-CE21-0001,CaDON,Cadmium et Deoxynivalenol dans les récoltes de blé dur: comprendre les évènements de contamination croisée et évaluer la toxicité du mélange.(2015)
International audience | Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
Mostrar más [+] Menos [-]Advances and challenges of microplastic pollution in freshwater ecosystems: A UK perspective Texto completo
2020
Meng, Yuchuan | Kelly, Frank J. | Wright, Stephanie L.
Microplastics have been increasingly documented in freshwater ecosystems in recent years, and growing concerns have been raised about their potential environmental health risks. To assess the current state of knowledge, with a focus on the UK, a literature review of existing freshwater microplastics studies was conducted. Sampling and analytical methodologies currently used to detect, characterise and quantify microplastics were assessed and microplastic types, sources, occurrence, transport and fate, and microplastic-biota interactions in the UK’s freshwater environments were examined. Just 32% of published microplastics studies in the UK have focused on freshwater environments. These papers cover microplastic contamination of sediments, water and biota via a range of methods, rendering comparisons difficult. However, secondary microplastics are the most common type, and there are point (e.g. effluent) and diffuse (non-point, e.g. sludge) sources. Microplastic transport over a range of spatial scales and with different residence times will be influenced by particle characteristics, external forces (e.g. flow regimes), physical site characteristics (e.g. bottom topography), the degree of biofouling, and anthropogenic activity (e.g. dam release), however, there is a lack of data on this. It is predicted that impacts on biota will mirror that of the marine environment. There are many important gaps in current knowledge; field data on the transport of microplastics from diffuse sources are less available, especially in England. We provide recommendations for future research to further our understanding of microplastics in the environment and their impacts on freshwater biota in the UK.
Mostrar más [+] Menos [-]Predicting the rate constants of semivolatile organic compounds with hydroxyl radicals and ozone in indoor air Texto completo
2020
Wei, Wenjuan | Sivanantham, Sutharsini | Malingre, Laeticia | Ramalho, Olivier | Mandin, Corinne
Semivolatile organic compounds (SVOCs) in air can react with hydroxyl radicals (OH), nitrate radicals (NO₃) and ozone (O₃). Two questions regarding SVOC reactivity with OH, NO₃ and O₃ in the gas and particle phases remain to be addressed: according to the existing measurements in the literature, which are the most reactive SVOCs in air, and how can the SVOC reactivity in the gas and particle phases be predicted? In the present study, a literature review of the second-order rate constant (k) was carried out to determine the SVOC reactivity with OH, NO₃ and O₃ in the gas and particle phases in ambient and indoor air at room temperature. Measured k values were available in the literature for 90 polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphates, dioxins, di(2-ethylhexyl)phthalate (DEHP) and pesticides including pyrifenox, carbamates and terbuthylazine. PAHs and organophosphates were found to be more reactive than dioxins and PCBs. Based on the obtained data, quantitative structure-activity relationship (QSAR) models were developed to predict the k value using quantum chemical, molecular, physical property and environmental descriptors. Eight linear and nonlinear statistical models were employed, including regression models, bagging, random forest and gradient boosting. QSAR models were developed for SVOC/OH reactions in the gas and particle phases and SVOC/O₃ reactions in the particle phase. Models for SVOC/NO₃ and SVOC/O₃ reactions in the gas phase could not be developed due to the lack of measured k values for model training. The least absolute shrinkage and selection operator (LASSO) regression and random forest models were identified as the most effective models for SVOC reactivity prediction according to a comparison of model performance metrics.
Mostrar más [+] Menos [-]Synergistic effect of fenpropathrin and paclobutrazol on early life stages of zebrafish (Danio rerio) Texto completo
2020
Wang, Yanhua | Yang, Guiling | Shen, Weifeng | Xu, Chao | Di, Shanshan | Wang, Dou | Li, Xinfang | Wang, Xinquan | Wang, Qiang
Aquatic organisms are usually exposed to various co-existing pollutants. However, toxic effects of pesticide mixtures on aquatic organisms and its potential underlying mechanism still remain unclear. The joint effects of fenpropathrin (FEN) and paclobutrazol (PAC) on zebrafish (Danio rerio) using diverse toxicological endpoints were investigated in the current work. Our data exhibited that the 96-h LC₅₀ values of FEN to zebrafish at multiple life phases ranged from 0.0029 (0.0013–0.0042) to 0.16 (0.082–0.23) mg a.i. L⁻¹, which were lower by comparison to PAC ranging from 13.16 (8.564–21.03) to 23.43 (17.94–29.91) mg a.i. L⁻¹. Combination of FEN and PAC displayed synergistic effect on embryonic zebrafish. Activities of T-SOD, Cu/Zn-SOD and CYP450 were remarkably changed in the majority of single and mixture treatments by comparison to the untreated group. The mRNA levels of 17 genes related to oxidative stress, cellular apoptosis, immune system and endocrine system were assessed, and the data suggested that embryonic zebrafish were affected by both single pesticides and their mixtures. Five genes (P53, tsh, ERα, crh and cxcl-clc) showed greater alterations when exposed to pesticide mixtures by comparison to their individual chemicals. Therefore, it is urgently necessary to conduct more studies on mixture toxicities of different pesticides to explore the chemical mixtures with synergistic interactions.
Mostrar más [+] Menos [-]Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation Texto completo
2020
Park, Jin Hee
Chromium (Cr) is a toxic element among which hexavalent chromium [Cr(VI)] is more toxic than trivalent chromium [Cr(III)]. Chromium can be reduced or oxidized in soil because soil is a complex medium and various soil components affect redox reaction of Cr in soil. Therefore, Cr speciation in hydroponics and soil was compared and Cr uptake and speciation by lettuce grown in the media were evaluated. Higher phytotoxicity was found in Cr(III) spiked soil than in Cr(VI) spiked soil, while Cr toxicity was higher in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Chromium was mainly accumulated in lettuce roots as Cr(III), and more Cr was translocated from roots to shoots grown in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Accumulation of Cr in roots grown in Cr(III) treated nutrient solution reduced Fe, K, Ca, Mg, and P uptake in lettuce. Chromium valence state was Cr(III) in lettuce leaves and roots grown in both Cr(III) and Cr(VI) treated hydroponics and soil. Chromium speciation in hydroponically grown lettuce roots was Cr(III) coordinated with 6 oxygens in the first shell and 2 or 4 carbons in the second shell as analyzed by X-ray absorption spectroscopy (XAS), which was similar to chromium acetate. The valence state of Cr in Cr(III) and Cr(VI) treated nutrient solution was not changed, while Cr(VI) was reduced to Cr(III) in Cr(VI) spiked soil by soil organic matter. Spiking of Cr(III) induced reduction of Mn in soil, which resulted in an increase of bioavailable Mn concentration in the Cr(III) spiked soil. Therefore, the increased phytotoxic effect for lettuce in Cr(III) spiked soil can be attributed to the reduction of Mn and subsequent release of Mn(II). For Cr(III) contaminated soil, Mn speciation should be considered, and bioavailable Mn concentration should be monitored although Cr existed as Cr(III) in soil.
Mostrar más [+] Menos [-]