Refinar búsqueda
Resultados 3121-3130 de 5,151
Effects of coexisting BDE-47 on the migration and biodegradation of BDE-99 in river-based aquifer media recharged with reclaimed water Texto completo
2018
Yan, Y. | Li, Y. | Ma, M. | Ma, W. | Cheng, X. | Xu, K.
Two prominent polybrominated diphenyl ether (PBDE) congeners have been included in the persistent organic pollutant list, 2,2′,4,4′,5-tetrabromodiphenyl ether (BDE-99) and 2,2,4,4′-tetrabromodiphenyl ether (BDE-47), which have been detected in treated municipal wastewater, river water, and sediments in China. A lab-scale column experiment was established to investigate the effects of the competitive sorption of BDE-47 on BDE-99 biodegradation and migration in two types of river-based aquifer soils during groundwater recharge with reclaimed water. Two types of recharge columns were used, filled with either silty clay (SC) or black carbon-amended silty clay (BCA). The decay rate constants of BDE-99 in the BCA and SC systems were 0.186 and 0.13 m⁻¹ in the single-solute system and 0.128 and 0.071 m⁻¹ in the binary-solute system, respectively, showing that the decay of BDE-99 was inhibited by the coexistence of BDE-47. This was particularly evident in the SC system because the higher hydrophobicity of BDE-99 determined the higher affinity and competition for sorption sites onto black carbon. The biodegradation of BDE-99 was suppressed by the coexistence of BDE-47, especially in the SC system. Lesser-brominated congeners (BDE-47 and BDE-28) and higher-brominated congeners (BDE-100, BDE-153, BDE-154, and BDE-183) were generated in the four recharge systems, albeit at different ratios. Bacterial biodiversity was influenced by the presence of BDE-47 in the SC system, while it had no significant effect on the BCA system, because the high sorption capacity of black carbon on the hydrophobic PBDEs effectively reduced their toxicity. The ranking order of the most abundant classes changed markedly due to the coexistence of BDE-47 in both the SC and BCA systems. The ranking order of the most abundant genera changed from Azospira, Methylotenera, Desulfovibrio, Methylibium, and Bradyrhizobium to Halomonas, Hyphomicrobium, Pseudomonas, Methylophaga, and Shewanella, which could be involved in PBDE degradation.
Mostrar más [+] Menos [-]Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse Texto completo
2018
Yao, Ying | Zhang, Yan | Gao, Bin | Chen, Renjie | Wu, Feng
This study explored the sorption of sulfamethoxazole (SMX) and sulfapyridine (SPY) onto biochars produced from raw and anaerobically digested bagasse. Initial evaluation of six bagasse biochars showed that digested bagasse biochar prepared at 600 °C (DBG600) was the best adsorbent to remove SMX and SPY. Further laboratory batch sorption experiments showed that DBG600 adsorbed SMX and SPY from aqueous solution with maximum adsorption capacity of 54.38 and 8.60 mg g⁻¹, respectively. Solution pH showed strong effect on the sorption ability of DBG600 to the two antibiotics, and the sorption decreased with increasing of solution pH. Experimental and model results suggested that adsorption of SMX and SPY onto DBG600 might be controlled by the π–π interaction.
Mostrar más [+] Menos [-]Photocatalytic reduction of carbon dioxide over Cu/TiO2 photocatalysts Texto completo
2018
Tasbihi, Minoo | Kočí, Kamila | Troppová, Ivana | Edelmannová, Miroslava | Reli, Martin | Čapek, Libor | Schomäcker, Reinhard
The photocatalytic reduction of CO₂ with H₂O was investigated using Cu/TiO₂ photocatalysts in aqueous solution. For this purpose, Cu/TiO₂ photocatalysts (with 0.2, 0.9, 2, 4, and 6 wt.% of Cu) have been synthesized via sol-gel method. The photocatalysts were extensively characterized by means of inductively coupled plasma optical emission spectrometry (ICP-OES), N₂ physisorption (BET), XRD, UV-vis DRS, FT-IR, Raman spectroscopy, TEM-EDX, and photoelectrochemical measurements. The as-prepared photocatalysts contain anatase as a major crystalline phase with a crystallite size around 13 nm. By increasing the amount of Cu, specific surface area and band gap energy decreased in addition to the formation of large agglomeration of CuO. Results revealed that the photocatalytic reduction of CO₂ decreased in the presence of Cu/TiO₂ in comparison to pure TiO₂, which might be associated to the formation of CuO phase acting as a recombination center of generated electron-hole pair. Decreasing of photoactivity can also be connected with a very low position of conduction band of photocatalysts with high Cu content, which makes H₂ production necessary for CO₂ reduction more difficult.
Mostrar más [+] Menos [-]Source identification and spatial distribution of metals in soils in a typical area of the lower Yellow River, eastern China Texto completo
2018
Lv, Jianshu | Yu, Yuanhe
In this study, 234 soil samples were recently collected from Gaoqing County (a typical area of the lower Yellow River) to determine the contents of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Multivariate statistical analyses such as correlation analysis, principal components analysis, and one-way ANOVA were applied to identify the source of metals in the soil. Geostatistical methods were used to analyze the spatial structure and distribution of the metals. The results indicated that the mean contents of all metals exceeded the background value of the lower Yellow River, especially for As, Cu, and Hg (1.23, 1.20, and 1.29 times that of the BV, respectively), indicating that these metals were enriched in the study area to different degrees. The results derived from multivariate analysis suggested that As, Cd, Cr, Cu, Ni, Pb, and Zn were mainly controlled by the combination of human activities and soil parent material, and the human activities included industrial emissions, traffic emissions, and agricultural practices. In addition, Hg mainly originated from anthropogenic inputs, such as textile printing, plastics processing, and petrochemical engineering. The contents of metals in different types of land use and parent materials are clearly different. The mean content for eight elements in urban construction land was significantly higher than that of the other land use types; in addition to Hg, the mean content of the other elements was the highest in the lacustrine deposit. The elements of As, Cd, Cr, Cu, Ni, Pb, and Zn had similar hotspots in the urban area, indicating the significant human influence. In addition, these seven metals showed high values in the southeast lacustrine deposit area. The high-value areas of Hg were concentrated in the southwest and northeast study area, which were consistent with the spatial pattern of the industrial sites.
Mostrar más [+] Menos [-]Enhanced dewaterability of waste activated sludge with Fe(II)-activated hypochlorite treatment Texto completo
2018
Zhu, Xiaofei | Yang, Qi | Li, Xiaoming | Zhong, Yu | Wu, You | Hou, Lihua | Wei, Jing | Zhang, Weixuan | Liu, Yu | Chen, Chung-Yu | Wang, Dongbo
A novel method was explored to improve the waste-activated sludge (WAS) dewaterability using Fe(II) combined with calcium hypochlorite, and the possible mechanisms were investigated simultaneously. Capillary suction time (CST), specific resistance to filtration (SRF) of sludge, and water content (WC) of dewatered sludge cake were selected as the factors to evaluate the sludge dewaterability. The maximum reduction of WC (30.76%) was achieved under the optimal conditions of Ca(ClO)₂ 0.04 g/g total suspended solids (TSS), FeSO₄·7H₂O 0.097 g/g TSS, and pH 7.3, while the reduction of CST and SRF reached 91.24 and 99.47%, respectively. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy of extracellular polymeric substances (EPSs) showed that sludge dewaterability was mainly related to the degradation of tryptophan and tyrosine protein-like substances in sludge EPS. Economic analysis suggested Fe(II) combined with calcium hypochlorite treatment had greater potential on enhancing WAS dewaterability compared with the traditional sludge treatment.
Mostrar más [+] Menos [-]Improved sorption of perfluorooctanoic acid on carbon nanotubes hybridized by metal oxide nanoparticles Texto completo
2018
Liu, Longfei | Liu, Yanli | Li, Chengliang | Ji, Rong | Tian, Xiaofei
Multi-walled carbon nanotubes (MWCNTs) are often used as adsorbent because of their strong adsorption capacity. However, due to the nature of MWCNTs, their ability to adsorb perfluorooctanoic acid (PFOA), a highly hydrophobic pollutant, is low. In this study, MWCNTs were modified by three nano metal oxides (nano iron oxide, copper oxide, and zinc oxide). The pristine (as the control) and modified MWCNTs were characterized by BET-N₂, TEM, FTIR, XPS, and XRD, which showed that nano metal oxides were well hybridized on the surface of MWCNTs. Radioactive-labeled PFOA (¹⁴C-PFOA) was used to quantify it at trace level. Adsorption kinetics showed that intra-particle diffusion was the control step of PFOA adsorbing on metal oxides hybridized MWCNTs (MOHCNTs). Adsorption capacity of PFOA on the MOHCNTs was higher than that on the control due to electrostatic and hydrophobic interactions. In addition, PFOA formed inner-sphere complexes with metal oxide nanoparticles via ligand exchange. The alteration of PFOA adsorption capacity by increasing ionic strength was attributed to the aggregation degree of MWCNTs, electrostatic shielding, and/or salting out effect. The presence of Ca²⁺ increased the adsorption, owing to not only its higher electrostatic shielding ability than Na⁺ but also its formation of bridge between PFOA and MOHCNTs. PFOA adsorption on MOHCNTs strongly depended on medium pH value. These results provide an innovative approach for removing trace PFOA from liquid medium.
Mostrar más [+] Menos [-]Adaption and use of a quadcopter for targeted sampling of gaseous mercury in the atmosphere Texto completo
2018
Black, Oscar | Chen, Jingjing | Scircle, Austin | Zhou, Ying | Cizdziel, JamesV.
We modified a popular and inexpensive quadcopter to collect gaseous mercury (Hg) on gold-coated quartz cartridges, and analyzed the traps using cold vapor atomic fluorescence spectrometry. Flight times averaged 16 min, limited by battery life, and yielded > 5 pg of Hg, well above the limit of detection (< 0.2 pg). We measured progressively higher concentrations upon both vertical and lateral approaches to a dish containing elemental Hg, demonstrating that the method can detect Hg emissions from a point source. Using the quadcopter, we measured atmospheric Hg near anthropogenic emission sources in the mid-south USA, including a municipal landfill, coal-fired power plant (CFPP), and a petroleum refinery. Average concentrations (± standard deviation) immediately downwind of the landfill were higher at ground level and 30 m compared to 60 and 120 m (5.3 ± 0.5 ng m⁻³, 5.4 ± 0.7 ng m⁻³, 4.2 ± 0.7 ng m⁻³, and 2.5 ± 0.3 ng m⁻³, respectively). Concentrations were also higher at an urban/industrial area (Memphis) (3.3 ± 0.9 ng m⁻³) compared with a rural/background area (1.5 ± 0.2 ng m⁻³). Due to airspace flight restrictions near the CFPP and refinery, we were unable to access near-field (stack) plumes and did not observe differences between upwind and downwind locations. Overall, this study demonstrates that highly maneuverable multicopters can be used to probe Hg concentrations aloft, which may be particularly useful for evaluating Hg emissions from remote landscapes and transient sources that are inadequately characterized and leading to uncertainties in ecosystem budgets.
Mostrar más [+] Menos [-]Metabolomic analysis of the toxic effect of chronic exposure of cadmium on rat urine Texto completo
2018
Chen, Shuai | Zhang, Meiyan | Bo, Lu | Li, Siqi | Hu, Liyan | Zhao, Xiujuan | Sun, Changhao
This study aimed to assess the toxic effect of chronic exposure to cadmium through a metabolomic approach based on ultra-performance liquid chromatography/mass spectrometry (UPLC–MS). Forty male Sprague–Dawley rats were randomly assigned to the following groups: control, low-dose cadmium chloride (CdCl₂) (0.13 mg/kg body weight (bw)), middle-dose CdCl₂ (0.8/kg bw), and high-dose CdCl₂ (4.9 mg/kg bw). The rats continuously received CdCl₂ via drinking water for 24 weeks. Rat urine samples were then collected at different time points to establish the metabolomic profiles. Multiple statistical analyses with principal component analysis and partial least squares–discriminant analysis were used to investigate the metabolomic profile changes in the urine samples and screen for potential biomarkers. Thirteen metabolites were identified from the metabolomic profiles of rat urine after treatment. Compared with the control group, the treated groups showed significantly increased intensities of phenylacetylglycine, guanidinosuccinic acid, 4-pyridoxic acid, 4-aminohippuric acid, 4-guanidinobutanoic acid, allantoic acid, dopamine, LysoPC(18:2(9Z,12Z)), and L-urobilinogen. By contrast, the intensities of creatinine, L-carnitine, taurine, and pantothenic acid in the treated groups were significantly decreased. These results indicated that Cd disrupts energy and lipid metabolism. Meanwhile, Cd causes liver and kidney damage via induction of oxidative stress; serum biochemical indices (e.g., creatinine and urea nitrogen) also support the aforementioned results.
Mostrar más [+] Menos [-]Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts Texto completo
2018
Nahar, Kamrun | Chowdhury, MdAbul Khair | Chowdhury, MdAkhter Hossain | Rahman, Afzal | Mohiuddin, K.M.
The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L⁻¹, respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.
Mostrar más [+] Menos [-]Spatial variations and sources of trace elements in recent snow from glaciers at the Tibetan Plateau Texto completo
2018
Huang, Ju | Li, Yuefang | Li, Zhen | Xiong, Longfei
Trace elements (TEs) could pose a potential threat to the environment and human health and hence they have been paid attention increasingly at present. This study presents the acid-leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the Tibetan Plateau (TP) from April to May in 2013. A nonparametric Jonckheere-Terpstra Method was used to test the trend of spatial distribution of TEs. The statistical analysis indicates that TEs were the highest in the QMLK glacier, lowest in the YZF glacier, and comparable in the other three glaciers. Comparison with other glaciers of the plateau, the statistical analysis on As, Cu, Mo, Pb, and Sb shows that their concentrations had, in general, a decreasing distribution characteristic from the north to the south of TP, which indicates that the northern TP is loading more atmospheric-polluted impurity than central and southern TP. Enrichment factor (EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr, and Cu originated mainly from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion, and traffic emission made an important contribution to the Mo, Pb, and Sb. Evidences from air mass back trajectories show that TEs in the five studied glaciers might not only come from surrounding areas of glaciers but also might be long-range transported by atmosphere from the Central Asia and South Asia and deposited on these glaciers.
Mostrar más [+] Menos [-]