Refinar búsqueda
Resultados 321-330 de 61,240
Biosorption Potential of Saraca asoca Bark Powder for Removal of Cr (VI) Ions from Aqueous Solution
2022
Lall, Anurag Samson | Pandey, Avinash Kumar | Mani, Jyoti Vandana
Saraca asoca bark has long been used in traditional Indian medicine. Considering its low cost and non-toxic nature, it can find application as a biosorbent. This article explores the application of Saraca asoca bark powder (SABP) for biosorption of hexavalent chromium. Various analytical techniques including Field emission scanning electron microscope (FESEM) attached with energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) were adopted in order to identify the physico-chemical features of SABP. Factors such as pH (2-8), contact time (for 3 hours), initial Cr (VI) concentration (10 – 250 mg/l) and temperature (15 - 35°C) were examined for their influence on Cr (VI) biosorption via batch studies. Biosorption data clearly followed Redlich-Peterson isotherm model as compared to Langmuir and Freundlich models. The Langmuir monolayer adsorption capacities (Qm) at 15, 25 and 35°C were 123.4, 125.0 and 175.4 mg/g respectively. Biosorption followed pseudo-second-order kinetics and the mechanism of diffusion was governed by both surface sorption and pore diffusion as demonstrated by the plot for Intraparticle diffusion model and the pore diffusion coefficient (Dp~10-9 cm2/s). The nature of biosorption was found to be spontaneous and endothermic as reflected through various thermodynamic parameters such as the free energy change (ΔG = -3.0 to -3.7 kJ/mol), entropy change (ΔS = 37.8 J/K/mol) and enthalpy change (ΔH = 7.9 kJ/mol). The study recommends that SABP may be utilized as a potential biosorbent for Cr(VI) ions.
Mostrar más [+] Menos [-]Synthesis and Characterization of Fe3O4- SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions
2022
Mohammed Ali, Nisreen Sabti | Alalwan, Hayder A. | Alminshid, Alaa H. | Mohammed, Malik M.
In this work, Fe3O4-SiO2 nanoparticles were synthesized, characterized, and applied as adsorbent material to remove methyl blue stain from an aqueous solution. The prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET) to determine the physical surface properties and correlate them to the adsorption efficiency. In addition, this study investigated the influence of several parameters on the removal percentage and adsorption capacity. Specifically, this study investigated the impact of changing the following parameters: pH (1 – 8), agitation speed (Uspeed; 100 - 350 rpm), initial methyl blue (MB) concentration (1 - 100 mg/L), adsorbent dose (0.05 to 0.15 g), and contact time (10 - 100 min). The characterization study reveals that the prepared material has an excellent surface area (385 ± 5 m2/g) and pore volume (0.31 cm3/g) which enhances the adsorption capacity. In addition, the prepared material showed excellent efficiency where the removal percentage reached 99.0±1% at the optimal operating conditions and the maximum adsorption capacity was 40 mg/g. This study delivers a full elucidation of the adsorption of MB dye by Fe3O4-SiO2 NPs which considers a promising inexpensive adsorbent. It also delivers important insight information about the adsorption process and the influence of each parameter, which fill the lack in this field.
Mostrar más [+] Menos [-]A New Sustainable Approach to Integrated Solid Waste Management in Shiraz, Iran
2022
Molayzahedi, Seyed Mohammadali | Abdoli, Mohammad Ali
Cities in developing countries like Shiraz in Iran face significant challenges due to a lack of an integrated solid waste management system. Climate change, soil, and water pollution are examples of environmental issues caused by improper Municipal Solid Waste Management Systems (MSWMS) in developing countries. The aim of this study is to find solutions for these environmental problems based on the experiences of developed countries. The data was collected using several methods such as visual observations, studying accessible documents of the current situation of the MSWMS in Shiraz, and participating in an interview with engineers the 'Shiraz Municipality Waste Management Organization' (SMWMO). Results present the current functional elements of MSWMS in Shiraz, Shiraz waste diversion rate (0.22), and its Zero Waste Index (.015). Moreover, the results present some recommendations to find a way to transform cities like Shiraz into zero-waste cities. Results indicate that establishing zero-waste policies, legal frameworks, and financial strategies as well as convincing private sector involvements in installing waste-to-energy facilities and a proper sanitary landfill to move the city toward optimum recycling and zero landfilling in addition to reducing consumption and maximizing diversion rate and finally sustainable development by the cooperation of government, NGOs and media programs would solve many problems of the MSWMS and would solve environmental issues in many cities.
Mostrar más [+] Menos [-]High Content of Sulfur in Liquid Stream Removal via new Carbonous Nano Adsorbent: Equilibrium, Kinetic study
2022
Meshkat, Seyyed Salar | Hosseini Dastgerdi, Zeinab | Abkhiz, Vahid | Hagh Shenas, Asieh
This research evaluates dibenzothiophene (DBT) adsorptive removal from the liquid stream on the graphitic carbon nitride (GCN) as a synthesized adsorbent at 25 0C with 3 g for 600 min. The morphological properties of GCN have been investigated by Brunauer–Emmett–Teller (BET), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). The study of the characteristic properties of nano adsorbent proves the suitability of the synthesized GCN in mercaptan adsorption process with the obtained data showing a good agreement with Freundlich model. The equilibrium capacity of DBT adsorption has been calculated at about 39.1 mg/g. This has also been 25.8 mg/g for TBM (tertiary butyl mercaptan). The adsorption capacity has increased by adding to the adsorbent dosage. Thermodynamic studies expose the negative values for ΔS0 (-8.99 kJ/mol. K), ΔH0 (-21.05 kJ/mol), and ΔG0 (8.91 kJ/mol), which demonstrate that DBT adsorption has been a natural exothermic process. In addition, this experiment verifies that the substitution of N into the carbon structure improves the DBT removal efficiency in comparison with pristine CNT as an adsorbent. The removal efficiency of DBT onto GCN has been approximately 80%, i.e. 20% higher than that of pure CNT. Results show that the adsorption capacity of DBT as a cyclic source of mercaptan has been higher than Tertiary butyl mercaptan (TBM) as a liner one. The DBT adsorption mechanism is done by π–π electron interactions between the aromatic structures of DBT, lone-pair electrons of the S atoms, and the pyridinic GCN planes band.
Mostrar más [+] Menos [-]Removal of Iron from Aqueous Solution by using Typha australis Leaves as Low Cost Adsorbent
2022
N’Dah, Fatimetou Mohamed | Sid’Ahmed Kankou, Mohamed | Abdallahi Bollahi, Mohamed | N’diaye, Abdoulaye Demba
Iron removal from aqueous solution via ultrasound-assisted adsorption using Typha australis leaves as low cost adsorbent had been studied. The effects of various experimental parameters like mass of the Typha australis adsorbent and contact time have been investigated using a batch experiment. The adsorption kinetic data were analyzed using the Pseudo First Order (PFO) and Pseudo Second Order (PSO) models. The adsorption modeling was carried out using the Langmuir, Freundlich and Redlich-Peterson adsorption models. For kinetic study, the adsorption process fitted the PSO model and agreed with chemisorption. Both the Langmuir and Redlich–Peterson models were found to fit the adsorption isotherm data well, but the Redlich– Peterson model was better. The maximum adsorption capacity from the Langmuir model (qmax) was 0.84 mg/g. The results of the present work showed that the Typha australis leaf, without any treatment has a good potential for iron removal from aqueous solutions via ultrasound-assisted adsorption.
Mostrar más [+] Menos [-]Distribution Features of Microplastic Particles in the Bolshiye Koty Bay (Lake Baikal, Russia) in Winter
2022
Karnaukhov, Dmitry | Biritskaya, Sofya | Dolinskaya, Ekaterina | Teplykh, Maria | Ermolaeva, Yana | Pushnica, Victoria | Bukhaeva, Lidiya | Kuznetsova, Iya | Okholina, Anastasia | Silow, Eugene
The problem of pollution of aquatic ecosystems with microplastics has been actively studied by the world scientific community. Most of this research has been devoted to marine ecosystems, whereas scant research has been conducted on fresh water bodies. Lake Baikal (Russia) is a unique natural reservoir. Previous studies devoted to the amount of microplastics in the waters of Lake Baikal were carried out singularly and were not of a systemic character; therefore, previously obtained data does not reflect a complete picture of the state of the lake. Within the framework of this study, our goal was to study the composition and morphological structure of microplastic particles in the ice of Lake Baikal at different distances from the coastline. To do this, a number of ice samples were taken from the upper and lower sides at five different points in South Baikal opposite the village of Bolshiye Koty. Later these samples were analyzed for the types of microplastics and their amount. In the samples taken, two types of microplastics were found—fragments and fibers—with fibers being predominant. The median values of the number of microplastics particles are higher in samples taken at the interface between water and ice, compared to samples taken from the ice surface. Presumably, main part of microplastic fibers found opposite the village of Bolshiye Koty were brought in by a constant circular current from the opposite east coast. In turn, the low number of fragments in the samples may be due to the freezing of the coastline.
Mostrar más [+] Menos [-]Physico-Chemical and Microbiological Assessment of Soils from Dumpsites for Plastic Degrading Microorganisms
2022
Emmanuel-Akerele, Hilda Abiola | Akinyemi, Priscilla Oluwatomi
Plastic pollution is a threat to the environment because of its slow degradation rate and high usage. The aim of this study is to isolate plastic degrading microorganisms from soils. The soil samples used for this study were collected from dumpsites filled with plastic and plastic materials and the effectiveness of the degradation of plastic materials was studied over a period of six (6) weeks in broth and agar culture under laboratory conditions by weight determination method. Physicochemical and microbiological analysis was carried out on the various soil samples using standard protocols. The biodegradation of polyvinylchloride (PVC) was done in-vitro using the microorganisms isolated from the soil. Microorganisms that were able to degrade a higher percentage of the plastic materials were; Staphylococcus aureus, Streptococcus sp, Bacillus sp, Escherichia coli Aspergillus niger, Aspergillus flavus and Trichoderma viridae. The total viable count for bacteria and fungi were within the range of 11.8x105 CFU/g to 2.0x1010 CFU/g and 3.3x105 CFU/g to 0.1x1011 CFU/g respectively. Staphylococcus aureus, Streptococcus sp, Bacillus sp, Micrococcus sp, Aspergillus niger, Aspergillus flavus, and Trichoderma viridae, degraded plastic up to 25%, 31.2%, 25% 31.2%, 12%, 10% and 10% respectively. These isolates may be used to actively degrade plastics, thereby reducing the rate of plastic pollution in our ecosystem.
Mostrar más [+] Menos [-]Ozonation of Procion Blue Reactive Dye and its Kinetics Study
2022
Bhad, Rahul M | Das, Arijit | Kodape, Shyam M.
In advanced oxidation processes, the application of ozonation has been immensely used in recent years for the treatment of effluent water from pharmaceutical, textile and chemical industries. In this study, procian blue, a major and vastly used reactive dye in the textile industry was chosen for ozonation. This work investigated the effect of ozonation for the treatment of synthetic textile effluent water. The change of pH values of dye solutions from 2-12 had moderate effect on dye removal. The degradation rate was faster during the initial period of ozonation and reached highest dye removal around 90 minutes. The highest 87% removal of dye was observed for the case of 60 mg/L dye solution at pH 12. At higher pH, the dye degradation increased as the rate of formation of hydroxyl radical increased with pH. Factors influencing on dye degradation like concentration of dye, time of ozonation, and addition of H2O2 with ozone (combined treatment) were also evaluated. The combined treatment (5 g/L of hydrogen peroxide) increased the degradation of dye to 92% as compared to 85% for pure ozonation process of 60 mg/L dye solution of initial pH 10. The procian blue dye degradation followed pseudo-first order kinetics with a value of rate constant 2.48×10-2 /min.
Mostrar más [+] Menos [-]Waste Orange Peel Adsorbent for Heavy Metal Removal from Water
2022
Yirga, Awash | Yadav, Om Prakash | Dey, Tania
Batch adsorption process was employed to remove copper(II) and cadmium(II) ions from contaminated water using dried orange peel powder as a cellulosic adsorbent, which supports circular economy and sustainability. Metal ion concentrations were determined using a flame atomic absorption spectroscopy (FAAS). Effects of pH, sorbate-sorbent contact time, metal ion concentration and adsorbent dose on the removal efficiency of the metal ions was investigated. The adsorption equilibrium was reached at 120 and 150 minutes for Cu(II) ions and Cd(II) ions, respectively. At optimized pH and biosorbent load, 10 mg L-1 of Cu(II) and Cd(II) ions could be removed to the extent 96.9% and 98.1%, respectively, within 2 hrs. However, the percentage removal of metal ions decreased with increasing their initial concentrations. The observed adsorption data was also interpreted in terms of Langmuir and Freundlich adsorption isotherm models. The calculated equilibrium data fitted more adequately with Freundlich model (higher correlation coefficient, R2) than Langmuir model, indicating heterogeneity of adsorption sites due to different functional groups in cellulose. Cd(II) ions showed less binding affinity and less desorption than Cu(II) ions. The maximum adsorption capacity (qmax) of dried orange peel were 2.78 mg/g and 2.57 mg/g for copper(II) and cadmium(II) ions, respectively.
Mostrar más [+] Menos [-]Impact of Cobalt Oxide Nanoparticles Dispersed in Water in Diesel Emulsion in Reduction of Diesel Engine Exhaust Pollutants
2022
M. D., Anil | Hemadri, Vinayak | Swamy, Mrityunjaya
The present work is aimed at decreasing pollutants emitted by diesel engine exhaust tailpipe and enhancing performance by incorporating cobalt oxide nanoparticles in water emulsified diesel. Water concentration of 5% and 10% is used to prepare various WD emulsion blends, with nano particle dosage levels of 50PPM and 100PPM. High speed homogenizer and ultrasonicator devices are used to disperse water droplets in diesel. Surfactant mixture of span80 and tween20 is used to achieve long term stability of emulsified fuel. The functional groups of emulsified fuel are analysed using FTIR spectroscopy. The characterization of cobalt oxide nanoparticles is carried using scanning electron microscope. Physiochemical properties such as calorific value, density, viscosity of emulsion blends and pure diesel are determined and compared. Experimental results reveal that addition of cobalt oxide nanoparticles in emulsified fuel with increased dosage of 100PPM shows 23%, 33.3%, 25%, and 44.6% reduction in NOX, HC, CO and smoke emission compared to pure diesel. The improvement in BTE and BSFC were observed for all emulsion blends.
Mostrar más [+] Menos [-]